THE **27th INTERNATIONAL CONFERENCE**ON MINIATURIZED SYSTEMS

FOR CHEMISTRY AND

LIFE SCIENCES

PROGRAM

CONFERENCE CHAIRS

Zbigniew Brzózka

Warsaw University of Technology POLAND Elżbieta Jastrzębska

Warsaw University of Technology POLAND

SUPPORTED BY

Warsaw University of Technology

SPONSORED BY

CONFERENCE AT A GLANCE

CUNFERENCE AT A GLANGE					
	SUNDAY, 15 OCTOBER				
09:00-17:00	Morning and Afternoon Workshops				
17:00-19:00	Conference Registra	tion and Check-In			
17:00-19:00	Wine and Cheese We	elcome Reception			
	MONDA	Y, 16 OCTOBER			
07:00-18:05	Registration				
08:00-08:30	Opening Remarks				
08:30-09:15	Plenary Presentation Nicole Pamme – <i>Stoc</i>	1 l kholm University, SWE	DEN		
09:15-09:30	Transition				
09:30-10:30	Session 1A1 Hypoxia-on-a-Chip Analysis I Session 1B1 Session 1C1 Biomolecular Detection I				
10:30-11:00	Break: Exhibit and P	oster Inspection			
11:00-12:20	Session 1A2 Session 1B2 Microfluidic Flow Single Cell Cytometry Analysis II Session 1C2 Permeability				
12:20-13:30	Lunch				
12:25-13:25	Industrial Stage 1				
13:30-13:50	Analytical Chemistry – Young Innovator Award Presentation				
13:50-14:35	Plenary Presentation II Séverine Le Gac – <i>University of Twente, NETHERLANDS</i>				
14:35 - 16:35	Poster Session 1 and Exhibit Inspection				
16:05-16:35	Break				
16:35-18:05	Session 1A4 Extracellular Matrix	Session 1B4 Blood Processing	Session 1C4 Wearable and Diagnosis		
	KEYNOTE Pilnam Kim	KEYNOTE Ian Papautsky	KEYNOTE Chwee Teck Lim		
18:15-19:45	Student Mixer				
18:15-22:30	Women in Microfluid	lics Event			
TUESDAY, 17 OCTOBER					
08:15-08:30	28/27/4/20/28/27/28/25				
08:30-09:15	Plenary Presentation III Manabu Tokeshi – <i>Hokkaido University, JAPAN</i>				
09:15-09:35	Lab on a Chip and Dolomite – Pioneers of Miniaturization Lectureship Prize and Presentation				
09:35-09:50	Transition				
09:50-11:10	Session 2A1 Cardiac & Stem-Derived Cells	Session 2B1 Pathogens Analysis	Session 2C1 Electrochemical Detection		
11:10-11:40	Break: Exhibit and P	oster Inspection			

CONFERENCE AT A GLANCE

TUESDAY, 17 OCTOBER (continued)				
11:20-11:40 Science Speed Dating				
	AAA - MAAAAAAA AAAA AAAA AAAA AAAAA AAAA			
11:40-12:40	Special Focus Session – Organoids			
	SPEAKERS Leonora Bużańska and Milica Radisic			
12:40-13:50	Lunch			
12:45-13:45	Industrial Stage 2			
13:50-15:10	Session 2A3 Vascularization- on-a-Chip Session 2B3 Session 2C3 Bacteria Analysis			
15:10-17:10	Poster Session 2 and	d Exhibit Inspection		
16:40-17:10	Break			
17:10-18:40	Session 2A4 Cell/Organ- on-a-Chip I	Session 2B4 Optical Detection	Session 2C4 Single Cell Analysis III	
	KEYNOTE Agnieszka Żuchowska	KEYNOTE Wouter van der Wijngaart	KEYNOTE Aram Chung	
	WEDNESI	DAY, 18 OCTOBER		
08:15-08:30	Announcements			
08:30-09:15	Plenary Presentation Bogusław Buszewski	1 IV – Mikolaj Kopernik Univ	versity Torun, POLAND	
09:15-09:30	Transition			
09:30-10:30	Session 3A1 Cell/Organ- on-a-Chip II	Session 3B1 Biomolecular Detection II	Session 3C1 Micromixers & Microreactors	
10:30-11:00	Break: Exhibit and P	oster Inspection		
11:00-12:00	Session 3A2 Nucleid Acid Analysis	Session 3B2 Biohybrid Microrobots	Session 3C2 Separation	
12:00-13:05	Lunch			
12:05-12:45	Industrial Stage 3			
13:05-13:50	Plenary Presentation V Lydia L. Sohn – <i>University of California, Berkeley, USA</i>			
13:50-14:00	MicroTAS 2024 Announcement			
14:00-16:00	Poster Session 3 and Exhibit Inspection			
15:30-16:00	Break			
16:00-17:30	Session 3A4 Neurobiology & Neuroscience	Session 3B4 Point-of-Care	Session 3C4 3D Printing	
	KEYNOTE Ashley E. Ross	KEYNOTE Jacqueline Linnes	KEYNOTE Rosanne Guijt	
19:00-24:00	Conference Banquet			

CONFERENCE AT A GLANCE			
THURSDAY, 19 OCTOBER			
08:30-09:15	Plenary Presentation VI Artur Chmielewski – National Aeronautics and Space Administration (NASA), USA and California Institute of Technology, USA		
09:15-09:35	Microsystems & Nan Test of Time Award	oengineering/Spring	er Nature –
09:35-09:50	Transition		
09:50-11:20	Session 4A1 Cell-on-a-Chip & Pathogens	Session 4B1 Microvalves & Delivering	Session 4C1 Space Exploration
	KEYNOTE Krzysztof Pyrć	KEYNOTE David Juncker	KEYNOTE Lourdes Basabe
11:20-11:50	Break and Exhibit In	spection	
	Awards Ceremony		
	CHEMINAS – Your	ng Researcher Poster	Awards
	Royal Society of (Widmer Poster Av	Chemistry/Lab on a C ward	hip –
11:50-12:30	Sensors (MDPI) – Outstanding Sensors and Actuators, Detection Technologies Poster Award		
11:50-12:30	IMT Masken und Teilungen AG – Microfluidics on Glass Poster Award		
	NIST and Lab on a Chip – Art in Science Award		
	Biomicrofluidics (AIP) – Best Paper Awards		
	Elsevier Sensors and Actuators B. Chemical – Best Paper Award		
	Microsystems & I Best Talk Award	Nanoengineering/Spr	inger Nature –
12:30-12:45	Closing Remarks		
12:45	Conference Adjourns	3	

TABLE OF CONTENTS

Welcome Letter
Special Focus Session Speakers5
Keynote Speakers 6
Plenary Speakers9
TECHNICAL PROGRAM
Technical Program Information
Sunday Program 12
Monday Program 14
Tuesday Program22
Wednesday Program 32
Thursday Program40
Poster Presentations45
Late News Poster Presentations
Poster Floorplan
Meeting Space Floorplan
MicroTAS 2024 Announcement Last Page

Welcome to the 27th International Conference on Miniaturized Systems for Chemistry and Life Sciences

Welcome to MicroTAS 2023, the 27th International Conference on Miniaturized Systems for Chemistry and Life Sciences, which represents a returning of our community's flagship scientific conference as an in-person event. Following on-line and hybrid versions of the conference in Asia (Hangzhou, China in 2022), America (Palm Springs, USA in 2021) and fully online/virtual in 2020, we are very pleased to welcome you this year in Katowice, Poland. Katowice is the heart of Silesia region and in the past, Silesia was known mainly for coal mines, heavy industry, agriculture, and forging. Today, it is one of the national leaders in innovation, new technologies, and green transformation. Katowice is an academic, cultural, and sports centre and we hope you enjoy your time in the city.

In redesigning several aspects of MicroTAS, we have been guided by a core mission: (1) to deliver a high-quality scientific program; (2) to create a forum for cutting edge and even unpublished work; (3) to facilitate scientific engagement across a spectrum of subject areas; (4) to foster connections among researchers of all career stages from across the international community; and (5) to grow and strengthen our community by including emerging scientific directions and diverse researchers.

We are pleased to welcome a community of almost 1,000 individuals to this "normal" MicroTAS, that continues to be the premier international forum for reporting the latest research results in microfluidics and lab-on-a-chip technologies, including aspects of microfabrication, nanotechnology, device integration, materials and surfaces, analysis and synthesis, and sensing and detection in the fields of life sciences and chemistry.

Over the last three years, the pandemic has prevented the safe organization of traditional forms of our conference, based on stationary presentations, direct scientific discussion, and participation in accompanying events. We thank you each for joining us and sharing your research here. It is you, our community, that makes MicroTAS the world's premier microfluidics conference.

At the heart of the meeting is the Technical Program. This year, abstract submissions were solicited within seven core topical areas that have been selected to reflect the scope of our growing field, spanning from fundamental physics and fabrication through sensors and detection to applications of microfluidic technology. Today, microfluidic technology addresses and serves a broad range of applications in the life sciences as reflected in the categories "cells and organs-on-chip" as well as biomedical and pharmaceutical areas like diagnostics, drug testing and personalized medicine.

To ensure the quality of abstracts accepted for MicroTAS 2023, a Technical Program Committee (TPC) consisting of 61 of our colleagues, together with 25 members of the Executive Technical Program Committee (ETPC), balanced across all three regions, contributed significant time and energy towards evaluating all abstract submissions. Together these volunteers evaluated 777 submissions in June, during on-line meetings, and selected 99 for oral presentations and 612 for poster presentations. In addition to the regular submissions, we accepted 101 Late News submissions for a grand total of 813 accepted abstracts. We arranged the parallel sessions into the Technical Program, taking care that similar topics be not presented in concurrent sessions, so that everybody be able to attend all talks on topics of his/her preference.

The importance of the contributions of TPC and ETPC members in maintaining the technical quality of the meeting and ensuring that the best and most exciting work emerges in both, poster and oral presentations cannot be overemphasized.

WELCOME

The diligent, dedicated, and unbiased work of the TPC/ETPC members are the bedrock of MicroTAS scientific program with exceptional quality. Membership on each committee is for a fixed term, with new members nominated by leaders in our community and self-nominated, then selected by the CBMS Board of Directors. The TPC/ETPC members dedicate late nights and weekends to our community to ensure the best and most exciting work is accepted. Thank you, TPC and ETPC members.

The MicroTAS 2023 oral program includes a suite of six exceptional Plenary Speakers, and twelve engaging Keynote Speakers, along with a slate of 99 exceptional submitted oral presentations. In each case, we sincerely hope that the scientific content and the presenter will inspire you to reflect the capabilities and understanding that can be unlocked by microfluidic systems, perhaps even influencing your own thinking and path forward.

For the first time in the MicroTAS, we decided to organize a Special Focus Session. This year it will be Organoids and the session will present fundamental research concerning organoids, human-induced pluripotent cell (iPS cell) models and recent work on studies of tissue development using organoids. We believe that it will be a huge inspiration for our community for further research.

The heart of every day's program is the poster session. The excellent contributions of hundreds of presenters make this part of the day a particularly great time for discussions, brainstorming and networking. PhD students with abstracts that have been highly ranked during the TPC/ETPC evaluation will be challenged in a competition for the daily or conference poster award. Even more awards will be celebrated during the week and specifically during the awards ceremony on Thursday.

In addition to the talks and poster sessions, we have arranged for 11 pre-conference workshops on Sunday, 15 October 2023. The workshops cover a wide range of emerging thematic areas related to microfluidics and provide an excellent opportunity to get a comprehensive overview on a specific topic in an intensive, 3-hours lecture.

COVID-19 showed us how in-person contact and conversation is important. Therefore, we organized for you activities associated with the conference such as Student Mixer, Women's Evening, and the Banquet in Spodek. Furthermore, for the first time in MicroTAS we have Science Speed Dating. This opportunity gives young scientists a chance to talk briefly with experienced scientists about specific topics such as Mobility, Family and Career, Women in Science, Post-Doc Positions, and Industrial. We hope that they will be held successfully and become a permanent part of the next MicroTAS conferences.

The list of individuals involved in making this MicroTAS conference a success is extensive. We would like to again thank the members of the TPC and ETPC for helping to build a strong scientific program and serving as session chairs, and, in particular, the ETPC group leaders who were central to this process (Yi-Chin Toh. Rebecca Pompano, Thomas Gervais, and Elżbieta Jastrzębska. Moreover, we are grateful for the efforts of members of the Exhibit and Sponsorship Committee (with Nicolas Verplanck and Artur Dybko as chairs), the Promotion Committee (with Stephanie Decrouix and Agnieszka Żuchowska as chairs) and Local Organizing Committee. We thank Jonathan Cottet and Bastien Venzac who have promotes MicroTAS in social media. We thank Ilona Grabowska-Jadach and Sławomir Jakieła for setting up the Sunday Workshops, Lourdes Basabe Desmonts and Edmond Young, for serving as Poster Award Chairs, Agnieszka Zuchowska for organizing Welcome Reception, Magdalena Flont for organizing the Women's Faculty Event and Patrycja Sokolowska for organizing the Students Mixer and Michal Chudy for coordinating Conference Banquet. Finally, we thank all 40 chairs of the sessions and plenary talks.

WELCOME LETTER

We are most thankful for help and support of students and postdoctoral fellows before and during the conference.

We are grateful to CBMS and its board members, including the current and past Boards of Directors and Executive Boards, who have promoted the growth of the MicroTAS conference over the years and provided valuable feedback during the planning of this year's meeting. In particular, we thank Amy Herr, CBMS President, and Joel Voldman, head of the TPC, as well as Petra Ditrich, head of the Awards Committee, for their support. It was your trust that made it possible to host this top-level conference for the first time in Poland.

Of course, we also thank all the sponsors, who have generously supported the conference, as well as the exhibitors, who will present their products and services during the meeting.

In addition, as with previous MicroTAS, the recipients of the Young Innovator Award, co-sponsored by the ACS Analytical Chemistry and CBMS, the Pioneers in Miniaturization co-sponsored by RSC journal Lab on a Chip, Dolomite and CBMS, and the Test of Time Award sponsored by Springer Nature Microsystems & Nanoengineering will be announced. In each case, we sincerely hope that the scientific content and the presenter will inspire you to reflect the capabilities and understanding that can be unlocked by microfluidic systems.

There will also be a series of awards to be presented in MicroTAS 2023, including: Microsystems & Nanoengineering/Springer Nature Best Talk Award, Elsevier Sensors and Actuators B. Chemical Best Paper Award, Biomicrofluidics (AIP) Best Paper Award, NIST and Lab on a Chip Art in Science Award, CHEMINAS (Society for Chemistry and Micro-Nano Systems) daily Young Researcher Poster Award, Royal Society of Chemistry/Lab on a Chip Widmer Poster Award, Sensors (MDPI) Outstanding Sensors and Actuators, Detection Technologies Poster Award, and IMT Masken und Teilungen AG Microfluidics on Glass Poster Award.

Moreover, we would like to express our most sincere and deepest gratitude to Sara Stearns and Shirley Galloway of Preferred Meeting Management Inc. (PMMI), who guided us through the past months, answered questions efficiently and with great patience. Without their expertise, their deep knowledge of the MicroTAS community, permanent kindness and tireless efforts as conference organizers, the meeting would not be as successful as it is.

Finally, thank you to all of you for joining us in Katowice for MicroTAS 2023 and for contributing to the success of the conference.

Welcome to Poland, welcome to Katowice!

Zbigniew Brzózka Warsaw University of Technology, POLAND 9

Elżbieta Jastrzebska

Warszyw I Injugrsity of Tachpology

Elżbieta Uastrzębska Warsaw University of Technology, POLAND

SPECIAL FOCUS SESSION SPEAKERS

Special Focus Session - Organoids 11:40 - 12:40

Hall C

This session will present fundamental research concerning organoids, human-induced pluripotent cell (iPS cell) models and recent work on studies of tissue development using organoids.

TUESDAY, 17 OCTOBER — 11:40 - 12:10

Special Session Speaker

Leonora Bużańska *Polish Academy of Sciences, POLAND*

EMERGING HUMAN BRAIN ORGANOID FIELD TO MODEL EARLY DEVELOPMENT AND PATHOLOGY

TUESDAY, 17 OCTOBER — 12:10 - 12:40

Special Session Speaker

Milica Radisic

University of Toronto, CANADA

ORGANOIDS AND ORGANS-ON-A-CHIP: FROM TOXICITY TESTING TO PERSONALIZED MEDICINE

MONDAY, 16 OCTOBER — 16:35 - 17:05

Session 1A4 - Extracellular Matrix

ENGINEERING EXTRACELLULAR MATRIX: COMPONENTS, MECHANICS, AND ARCHITECTURE

Pilnam Kim

Korea Advanced Institute of Science and Technology (KAIST), KOREA

Session 1B4 - Blood Processing

BLOOD MICROFLUIDICS: FROM FRACTIONATION
TO LIQUID BIOPSY

lan Papautsky

University of Illinois, Chicago, USA

Session 1C4 - Wearable and Diagnosis

WEARABLE MICROFLUIDIC SENSING TECHNOLOGIES FOR HEALTHCARE APPLICATIONS

Chwee Teck Lim

National University of Singapore, SINGAPORE

TUESDAY, 17 OCTOBER — 17:10 - 17:40

Session 2A4 - Cell/Organ-on-a-Chip I

CELL AND ORGAN-ON-CHIP APPROACHES
IN CANCER RESEARCH

Agnieszka Żuchowska

Warsaw University of Technology, POLAND

Session 2B4 - Optical Detection

ADVANCEMENTS IN MICROFLUIDICS: CELL BIOPSIES, DIAGNOSTICS, AND PROGRAMMABLE MATTER

Wouter van der Wiingaart

KTH Royal Institute of Technology, SWEDEN

TUESDAY, 17 OCTOBER — 17:10 - 17:40 (continued)

Session 2C4 - Single Cell Analysis III MICROFLUIDIC PLATFORMS FOR IMMUNOTHERAPY AND

Aram Chung Korea University, KOREA

GENOME EDITING

WEDNESDAY, 18 OCTOBER — 16:00 - 16:30

Session 3A4 - Neurobiology & Neuroscience EX VIVO ORGAN-ON-CHIP PLATFORMS FOR SENSING NEURON-IMMUNE COMMUNICATION

Ashley E. Ross University of Cincinnati, USA

Session 3B4 - Point-of-Care

PAPER-BASED MOLECULAR DIAGNOSTICS FOR PATHOGEN DETECTION AT THE EXTREME POINTS-OF-CARE

Jacqueline Linnes
Purdue University, USA

Session 3C4 - 3D Printing

3D PRINTING MEMBRANE INTEGRATED DEVICES Rosanne Guijt

Deakin University, AUSTRALIA

THURSDAY, 19 OCTOBER — 09:50 - 11:20

Session 4A1 - Cell-on-a-Chip Pathogens

ADVANCED MODELS FOR COMPREHENSIVE UNDERSTANDING OF VIRAL INFECTION

Krzysztof Pyrć

Jagiellonian University, POLAND

THURSDAY, 19 OCTOBER — 09:50 – 11:20 (continued)

Session 4B1 - Microvalves & Delivering

DIGITAL MANUFACTURING OF FUNCTIONAL, READY-TO-USE MICROFLUIDIC SYSTEMS David Juncker

McGill University, CANADA

Session 4C1 - Space Exploration TOWARDS UNIVERSAL ANALYTICAL PLATFORMS TO STUDY BIOLOGICAL SYSTEMS

Lourdes Basabe University of the Basque Country, SPAIN

MONDAY, 16 OCTOBER — 08:30 - 09:15

Plenary Presentation I

Nicole Pamme
Stockholm University, SWEDEN

MICROFLUIDICS FOR CLINICAL DIAGNOSTICS AND ENVIRONMENTAL ANALYSIS IN RESOURCE-LIMITED SETTINGS

MONDAY, 16 OCTOBER — 13:50 - 14:35

Plenary Presentation II

Séverine Le Gac

University of Twente, NETHERLANDS

ORGAN-ON-CHIP MODELS FOR BIOLOGICAL
AND MEDICAL APPLICATIONS

TUESDAY, 17 OCTOBER — 08:30 - 09:15

Plenary Presentation III

Manabu Tokeshi Hokkaido University, JAPAN

DEVELOPMENT OF FUNCTIONAL LIPID NANOPARTICLES USING MICROFLUIDIC DEVICES

PLENARY SPEAKERS

WEDNESDAY, 18 OCTOBER — 08:30 - 09:15

Plenary Presentation IV

Bogusław Buszewski *Mikolaj Kopernik University Torun, POLAND*

BIOANALYTICS FROM MICRO- TO NANO- DIMENSION

WEDNESDAY, 18 OCTOBER — 13:05 – 13:50

Plenary Presentation V

Lydia L. Sohn

University of California, Berkeley, USA

MICROFLUIDICS FOR ASSESSING BREAST CANCER SUSCEPTIBILITY

THURSDAY, 19 OCTOBER — 08:30 - 09:15

Plenary Presentation VI

Artur Chmielewski

National Aeronautics and Space Administration (NASA), and California Institute of Technology, USA

HOW MICRODEVICES REVOLUTIONIZE DEEP SPACE EXPLORATION

TECHNICAL PROGRAM INFORMATION

Parallel Oral Sessions

Each day papers will be presented in three parallel sessions. There will be a total of 99 oral sessions throughout the Conference.

Guide to Understanding Session Numbering

Each session in the technical program is assigned a unique number which clearly indicates when and where the session is presented. The number of each session is shown before the session title.

Session Number: 1A1

The first character (i.e., 1) indicates the day of the Conference:

1 = Monday 3 = Wednesday 2 = Tuesday 4 = Thursday

The second character (i.e., A) indicates which room the session is held in:

A = Hall C

B = Auditorium **C** = Ballroom B

The third character (i.e., 1) shows the sequence the session is held during the day:

1 = morning

2 = late-morning

3 = afternoon

4 = late afternoon

Posters

Three poster sessions will be held Hall B of the Congress Centre on Monday, Tuesday, and Wednesday. All posters are listed with their assigned number and day that they are on display. Authors will be available for questions during their appointed time. Posters are color coded by day and classification to coordinate with the poster floor plan on the page 125 of this program.

Guide to Understanding Poster Numbering

Each poster is assigned a unique number which clearly indicates when and where the poster is presented. The number of each poster is shown before the title.

Poster Number: M001.a

The first character (i.e., M) indicates the day of the Conference that the poster will be on display.

M = Monday T = Tuesday W = Wednesday

The second character (i.e., **001**) is the poster board position on the floor plan. The last character (i.e., **a**) shows the classification color of the poster.

	а	Cells, Organisms and Organs on a Chip
Z	b	Diagnostics, Drug Testing and Personalized Medicine
Ĕ	С	Fundamentals in Microfluidics and Nanofluidics
<u>ව</u>	d	Integrated Microfluidic Platforms
SIF		Micro- and Nanoengineering
ASSIFICATION	f	Sensors and Detection Technologies
겅	g	Other Applications of Microfluidics
	h	Late News

SUNDAY, 15 OCTOBER

08:15 - 09:15 Morning Workshop Registration

09:00 - 12:00 Morning Workshops (Break at 10:30)

WORKSHOP 1

MULTIORGAN-ON-A-CHIP

Yi-Chin Toh¹, Ashleigh Theberge², Rebecca Pompano³, Bryan Gao⁴, and Jee Yeon Lee⁵

- ¹Queensland University of Technology, AUSTRALIA, ²University Washington, USA,
- ³University of Virginia, USA, ⁴University of Melbourne, AUSTRALIA, and
- 5 National University of Singapore, SINGAPORE

WORKSHOP 3

MICROFLUIDICS MEETS CARDIOVASCULAR BIOLOGY

- Sara Baratchi¹, Khashayar Khoshmanesh², and Darwin R. Reyes^{3,4}
- ¹Baker Heart Diabetes Institute, AUSTRALIA, ²RMIT University, AUSTRALIA,
- ³National Institute of Standards and Technology (NIST), USA, and
- ⁴Microfluidics Association (MFA), USA

WORKSHOP 4

SMART MATERIALS WITHIN MICROFLUIDIC DEVICES FOR SENSING AND ACTUATION

Fernando Benito López, Lourdes Basabe-Desmonts, and Janire Saez Castaño University of the Basque Country, SPAIN

Workshop sponsored by: Frontiers Media S.A.

WORKSHOP 5

DROPLET MICROGLUIDICS - DESIGN, IMPLEMENTATION AND APPLICATIONS

Piotr M. Korczyk¹, Sławomir Błoński¹, and Sławomir Jakieła²

¹Institute of Fundamental Technological Research Polish Academy of Sciences, POLAND and ²Warsaw University of Life Sciences, POLAND

WORKSHOP 6

COMMERCIALIZATION OF MICROFLUIDICS DEVICES AND SYSTEMS

Piotr Garstecki¹, Vincent Linder², Tomasz Kosiński³, and Marcin Myszkowski³ ¹Polish Academy of Sciences, POLAND, ²BioMedical Entrepreneur and IVD Independent Consultant, SWITZERLAND, and ³Scope Fluidics S.A., POLAND

13:45 - 14:15 Afternoon Workshop Registration

14:00 - 17:00 Afternoon Workshops (Break at 15:30)

WORKSHOP 7

DNA ANALYSIS IN NANOCHANNELS

Jonas Tegenfeldt1 and Fredrik Westerlund2

¹Lund University, SWEDEN and ²Chalmers University, SWEDEN

WORKSHOP 8

STATISTICAL TOOLS AND APPROACHES TO VALIDATE RESEARCH RESULTS

Katarzyna Pawlak and Magdalena Borowska Warsaw University of Technology, POLAND

WORKSHOP 9

PAPER MICROFLUIDICS - DESIGN, MANUFACTURE, APPLICATION

Daniel Citterio
Keio University, JAPAN

WORKSHOP 10

3D PRINTING FOR BIOMEDICINE

Wojciech Swieszkowski¹ and Marco Costantini²

¹Warsaw University of Technology, POLAND and ²Institute of Physical Chemistry, Polish Academy of Sciences, POLAND

WORKSHOP 11

POC DIAGNOSTICS AT RESOURCE LIMITED SETTINGS

Aman Russom

KTH Royal Institute of Technology, SWEDEN

WORKSHOP 12

POLYMER PRODUCTION AND STANDARDIZATION AND A HAND-ON TEST WITH OFF-THE-SHELF MICROFLUIDIC COMPONENTS

Claudia Gärtner

microfluidic ChipShop GmbH, GERMANY

17:00 - 19:00 Conference Registration and Check-In

17:00 - 19:00 Wine and Cheese Reception

MONDAY AT A GLANCE

07:00-18:05	Registration		
08:00-08:30	Opening Remarks		
08:30-09:15	Plenary Presentation I Nicole Pamme – Stockholm University, SWEDEN		
09:15-09:30	Transition		
09:30-10:30	Session 1A1 Hypoxia-on-a-Chip	Session 1B1 Single Cell Analysis I	Session 1C1 Biomolecular Detection I
10:30-11:00	Break: Exhibit and P	oster Inspection	
11:00-12:20	Session 1A2 Microfluidic Flow Cytometry	Session 1B2 Single Cell Analysis II	Session 1C2 Permeability
12:20-13:30	Lunch		
12:25-13:25	Industrial Stage 1		
13:30-13:50	Analytical Chemistry – Young Innovator Award Presentation		
13:50-14:35	Plenary Presentation II Séverine Le Gac – <i>University of Twente, NETHERLANDS</i>		
14:35 - 16:35	Poster Session 1 and Exhibit Inspection		
16:05-16:35	Break		
16:35-18:05	Session 1A4 Extracellular Matrix	Session 1B4 Blood Processing	Session 1C4 Wearable and Diagnosis
	KEYNOTE Pilnam Kim	KEYNOTE Ian Papautsky	KEYNOTE Chwee Teck Lim
18:15-19:45	Student Mixer		
18:15-22:30	Women in Microfluidics Event		

MONDAY, 16 OCTOBER

07:00 - 18:05 Registration		
08:30	Opening Remarks – MicroTAS 2023 Conference Chairs • Zbigniew Brzózka – Warsaw University of Technology, POLAND • Elżbieta Jastrzębska – Warsaw University of Technology, POLAND	

Plenary Presentation I

Chair: Elżbieta Jastrzębska, Warsaw University of Technology, POLAND

Hall C

08:30 MICROFLUIDICS FOR CLINICAL DIAGNOSTICS AND ENVIRONMENTAL ANALYSIS IN RESOURCE-LIMITED SETTINGS

Nicole Pamme

Stockholm University, SWEDEN

09:15 - 09:30 Transition

Session 1A1 - Hypoxia-on-a-Chip

Chair: Karen Cheung, University of British Columbia, CANADA

Hall C

09:30 BRACHYTHERAPY ON-A-CHIP: A SIMPLE, PRECISE, AND CLINICALLY-RELEVANT APPROACH FOR RADIOTHERAPY TESTING IN 3D BIOLOGY

Rodin Chermat^{1,2,3}, Elena Refet-Mollof^{1,2,3}, Yuji Kamio^{2,5}, Jean-François Carrier^{2,3,4,5}, Philip Wong^{2,3,6}, and Thomas Gervais^{1,2,3}

¹Polytechnique Montréal, CANADA, ² Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), CANADA, ³ Institut du Cancer de Montréal (ICM), CANADA, ⁴ Université de Montréal, CANADA, ⁵ Centre Hospitalier de l'Université de Montréal (CHUM), CANADA, and ⁵ University Health Network, CANADA

09:50 INTERPLAY BETWEEN DRUG RESISTANCE AND MITOCHONDRIA MORPHOLOGY IN A TUMOR-ON-CHIP MODEL UNDER PRECISE OXYGEN CONTROL

Charlotte Bouquerel^{1,2}, Mathieu Deygas¹, Linda Meddahi¹, Bertrand Cinquin³, Géraldine Gentric¹, Giacomo Gropplero¹, William César², Fatima Mechta-Grigoriou¹, Gérard Zalcman¹, Nathalie Mazure⁴, Maria Carla Parrini¹, and Stephanie Descroix¹ ¹Institut Curie, FRANCE, ²Fluigent, FRANCE, ³Institut Pierre Gilles de Gennes, FRANCE, and ⁴INSERM, FRANCE

10:10 A MICROFLUIDIC DEVICE TO SIMULTANEOUOSLY GENERATE SHEAR STRESS AND HYPOXIA CONDITIONS TO STUDY ENDOTHELIAL CELL MORPHOLOGY AND REACTIVE OXYGEN SPECIES BEHAVIOR

Min-Yen Hsin¹, Yen-Cheng Hsiung¹, Kuang-Hsing Chiang^{1,2}, and Nien-Tsu Huang^{1,3}

¹National Taiwan University, TAIWAN, ²Taipei Medical University, TAIWAN, and ³National Taiwan University, TAIWAN

Session 1B1 - Single Cell Analysis I Chair: Petra Ditrich, ETH Zurich, SWITZERLAND

Auditorium

09:30 THREE-DIMENSIONAL ISOTROPIC IMAGING OF LIVE SUSPENSION CELLS BASED ON DROPLET MICROVORTICES

Braulio Cardenas Benitez, Xuhao Luo, Erin Rhee, Shehreen T. Hassan, Richard Hurtado, Abigail F. Howe, and Abraham P. Lee University of California, Irvine, USA

09:50 LIVE FLUOROSPOT: HIGH-THROUGHPUT SYSTEM FOR REAL-TIME SINGLE-CELL SECRETION IMAGING WITH OPTICAL WAVEGUIDE CHIP

Zhuohao Yang¹, Mai Yamagishi², Nobutake Suzuki², Yuto Kurisu¹, Koji Nagaoka¹, Kazuyo Moro³, Kazuhiro Kakimi⁴, Etsushi Kuroda⁵, Shinya Sakuma⁶, Takashi Funatsu¹, and Yoshitaka Shirasaki¹¹*University of Tokyo, JAPAN*, ²*Live Cell Diagnosis, Ltd., JAPAN*, ³*Institute of Physical and Chemical Research (RIKEN), JAPAN*, ⁴*Kindai University, JAPAN*, ⁵*Hyogo College of Medicine, JAPAN*, and ⁶*Kyushu University, JAPAN*

10:10 HIGH-SPEED REPETITIVE OSMOTIC STIMULATIONS TO A SIGNLE CELL BY UTILIZING MICRO-VORTICES

Makoto Saito, Yoko Yamanishi, and Shinya Sakuma Kyushu University, JAPAN

Session 1C1 - Biomolecular Detection I

Chair: Joel Voldman. Massachusetts Institute of Technology. USA

Ballroom B

09:30 A MICROFLUIDIC DEVICE COMBINING COMPETITIVE NON-SELEX METHOD WITH WASHING STRINGENCY CONTROL FOR SELECTING FOLATE RECEPTOR ALPHA APTAMERS

Yi-Da Chung and Gwo-Bin Lee National Tsing Hua University, TAIWAN

09:50 MEDIATOR PROBE-BASED MULTIPLEX DIGITAL METHYLATION-SPECIFIC PCR FOR SENSITIVE DETECTION AND METHYLATION ANALYSIS OF BIOMARKER PANELS

Weiwen Cui, Fan-En Chen, Yang Zhao, and Tza-Huei Wang Johns Hopkins University, USA

10:10 PIXELATED CHEMICAL DISPLAYS AS A TOOL FOR STUDYING THE DYNAMICS OF THE NOTCH CELLULAR SIGNALING PATHWAY

Maude Proulx¹, Pierre Clapperton-Richard¹, Laurent Potvin-Trottier², and Thomas Gervais¹

¹Polytechnique Montréal, CANADA and ²Concordia University, CANADA

10:30 - 11:00 Break: Exhibit and Poster Inspection

Session 1A2 - Microfluidic Flow Cytometry Chair: Kazuma Mawatari, Waseda University, JAPAN

Hall C

11:00 IMPEDANCE FLOW CYTOMETRY BASED ON CONSTRICTIONAL MICROCHANNELS AND DEEP LEARNING

Huiwen Tan^{1,2}, Xiao Chen^{1,2}, Xukun Huang^{1,2}, Deyong Chen^{1,2}, Junbo Wang^{1,2}, and Jian Chen^{1,2}

¹Chinese Academy of Sciences, CHINA and ²University of Chinese Academy of Sciences, CHINA

11:20 MULTI-COLOR AND MULTI-DELAY, TWO-DIMENSIONAL FLOW CYTOMETRY FOR MULTI MARKER IDENTIFICATION AND DISCRIMINATION OF FLUORESCENCE AND SCATTERING

Kunihiko lizuka^{1,2}, Masaki Ueno¹, and Soo Hyeon Kim¹

1 University of Tokyo, JAPAN and ²Lab Arco Limited, JAPAN

11:40 IMAGING CYTOMETRY USING ELECTRICAL IMPEDANCE TRIGGERED FLASH

Ishita Bansal, Shamibrota K. Roy, Kaushik Basu, and Prosenjit Sen Indian Institute of Science, INDIA

12:00 IMPEDANCE FLOW CYTOMETRY BASED SINGLE CELL SORTING AND DESALTING FOR MASS SPECTROMETRY

Junwen Zhu, Yongxiang Feng, Peng Zhao, Huichao Chai, Fei Liang, and Wenhui Wang Tsinghua University, CHINA

Session 1B2 - Single Cell Analysis II

Chair: Jose L. Garcia Cordero, Institute of Human Biology, SWITZERLAND

Auditorium

11:00 A NOVEL HIGH-THROUGHPUT INTRACELLULAR DELIVERY PLATFORM FOR HIGHLY EFFICIENT "OFF-THE-SHELF" NATURAL KILLER CELL-BASED IMMUNOTHERAPY

Hyelee Kim¹, Mujin Lee², Bohwa Han², Junsang Doh², and Aram J. Chung¹

¹Korea University, KOREA and ²Seoul National University, KOREA

11:20 DENDRIMERIC DNA COORDINATE BARCODING DESIGN FOR SPATIAL RNA SEQUENCING

Jiao Cao and Lingling Wu Xiamen University, CHINA

11:40 A MICROFLUIDIC ASSAY FOR SINGLE CELL MICRORNA QUANTIFICATION IN NON-INVASIVELY SAMPLED PRIMARY HUMAN CELLS

Vanessa Ho, Jonathan R. Baker, Keith R. Willison, Peter J. Barnes, David R. Klug, and Louise E. Donnelly Imperial College London, UK

Session 1B2 - Single Cell Analysis II (continued)

12:00 ELASTOMICS: HIGH-THROUGHPUT MECHANICAL PHENOTYPING AND TRANSCRIPTOMICS OF SINGLE CELLS

Akifumi Shiomi¹, Taikopaul Kaneko¹, Kaori Nishikawa¹,

and Hirofumi Shintaku1,2

¹Institute of Physical and Chemical Research (RIKEN), JAPAN and

²Kyoto University, JAPAN

Session 1C2 - Permeability

Chair: Carolyn Ren, University of Waterloo, CANADA

Ballroom B

11:00 LIPOSOME BUDDING: MICROFLUIDIC GENERATION OF MONODISPERSE LIPOSOMES

Jiajue Ji and Ryuji Kawano

Tokyo University of Agriculture and Technology, JAPAN

11:20 SHAPE-CONTROLLED LIPID BILAYER FOR ENHANCED ION CHANNEL INCORPORATION

Hisatoshi Mimura¹, Toshihisa Osaki^{1,2}, Sho Takamori¹,

Kenji Nakao2, and Shoji Takeuchi1,3

¹Kanagawa Institute of Industrial Science and Technology, JAPAN,

²MAQsys Inc., JAPAN, and ³University of Tokyo, JAPAN

11:40 MALE AND FEMALE HUMAN-MIMETIC ARTIFICIAL CELL MEMBRANES TO ASSESS PASSIVE PERMEABILITY IN THE SMALL INTESTINE USING MICROFLUIDIC TECHNOLOGIES

Kirandeep Gill, Jai<mark>me Kor</mark>ner, and Kather<mark>i</mark>ne Elvira University of Victoria, CANADA

12:00 SYNTHESIS AND ISOLATION OF METAL COMPLEX-CONTAINING PROTEINS BY SUPER WATER REPELLENT DOUBLY REENTRANT STRUCTURE UMBRELLA PILLAR ARRAY

Daiki Tanaka¹, Masashi Kobayashi¹, Risa Fujita¹, Takashiro Akitsu², Takashi Tanii¹, Masahiro Furuya¹, Tetsushi Sekiguchi¹, and Shuichi Shoji¹

¹Waseda University, JAPAN and ²Tokyo University of Science, JAPAN

12:20 - 13:30 Lunch

Industrial Stage 1

Chair: Lisa Muiznieks, ELVESYS, FRANCE

Auditorium

12:25 1a - CHALLENGES OF DEVELOPING HIGH-PRECISION FLUID MANAGEMENT PRODUCTS BASED ON STATE-OF-THE-ART TECHNOLOGIES FOR LIFE SCIENCES AND DIAGNOSTICS

Bruno Charléty Fluigent, FRANCE

12:45 1b - WHERE PHOTONICS MEET MICROFLUIDICS - CONSUMABLES FOR LIFE SCIENCES MADE OF GLASS

Tobias Bauert

IMT Microtechnologies, SWITZERLAND

Industrial Stage 1 (continued)

13:05 1c - STANDARDIZATION LEADING MICROFLUIDICS TOWARDS LABORATORY ROUTINE

Claudia Gärtner

microfluidic ChipShop GmbH, GERMANY

Analytical Chemistry - Young Innovator Award Presentation

Hall C

13:30 Govind Kaigala

University of British Columbia, CANADA

Plenary Presentation II

Chair: Amy Herr, University of California, Berkeley, USA

Hall C

13:50 ORGAN-ON-CHIP MODELS FOR BIOLOGICAL AND MEDICAL APPLICATIONS

Séverine Le Gac

University of Twente, NETHERLANDS

09:15 - 09:30	Transition
14:35 - 16:35	Poster Session 1 and Exhibit Inspection Presentations are listed by topic category with their assigned number starting on page 45.

16:05 - 16:35 Break

Session 1A4 - Extracellular Matrix

Chair: Hiroaki Suzuki, Chuo University, JAPAN

Hall C

16:35 KEYNOTE PRESENTATION

ENGINEERING EXTRACELLULAR MATRIX: COMPONENTS, MECHANICS, AND ARCHITECTURE

Pilnam Kim

Korea Advanced Institute of Science and Technology (KAIST), KOREA

17:05 A PATTERNING TECHNIQUE FOR MICRO-CRIMPED COLLAGEN

SHEETS WITH TUNABLE TENSILE PROPERTIES

Yuming Zhang

University of Toronto, CANADA

17:25 TISSUE-M2: TUNABLE IN SITU SYNTHESIS OF ULTRA-THIN EXTRACELLULAR MATRIX-DERIVED MEMBRANES

Jeremy Newton, Siwan Park, and Edmong W.K. Young University of Toronto, CANADA

Session 1A4 - Extracellular Matrix (continued)

17:45 IN-FLOW FORMATION OF COLLAGEN MICROGELS FOR REDUCED CONTRACTION IN LONG-TERM TISSUE CULTURE

Sushant Singh, Teodor Veres, and Axel Guenther *University of Toronto, CANADA*

Session 1B4 - Blood Processing

Chair: Daniel Irimia, Massachusetts General Hospital, Harvard Medical School, USA

Auditorium

16:35 KEYNOTE PRESENTATION

BLOOD MICROFLUIDICS: FROM FRACTIONATION TO LIQUID BIOPSY

Ian Papautsky

University of Illinois, Chicago, USA

17:05 ACOUSTOPHORESIS ENRICHMENT OF TUMOR CELL CLUSTERS IN BLOOD OF PATIENTS WITH METASTATIC PROSTATE CANCER

Cecilia Magnusson¹, Per Augustsson¹, Eva Undvall Anand¹, Andreas Lenshof¹, Andreas Josefsson^{2,3}, Anders Bjartell¹, Yvonne Ceder¹, Hans Lilja^{1,4}, and Thomas Laurell¹

1 Lund University, SWEDEN, ² Gothenburg University, SWEDEN, ³ Umeå University, SWEDEN, and ⁴ Memorial Sloan-Kettering Cancer Center, USA

17:25 INERTIAL ISOLATION OF LEUKOCYTES FROM ULTRA-LOW VOLUME BLOOD SAMPLES OBTAINED BY FINGERSTICK

Roberto Rodriguez-Moncayo¹, John-Alexander Preuss², Janina Bahnemann², Jongyoon Han¹, and Joel Voldman¹ ¹Massachusetts Institute of Technology, USA and ²University of Augsburg, GERMANY

17:45 RARE CELL ENRICHMENT BY CELL SELF-ORGANIZATION IN ACOUSTIC FIELDS

Richard Soller, Ola Jakobsson, and Per Augustsson Lund University, SWEDEN

Session 1C4 - Wearable and Diagnosis

Chair: Artur Dybko, Warsaw University of Technology, POLAND

Ballroom B

16:35 KEYNOTE PRESENTATION

WEARABLE MICROFLUIDIC SENSING TECHNOLOGIES FOR HEALTHCARE APPLICATIONS

Chwee Teck Lim

National University of Singapore, SINGAPORE

17:05 ARAUCARIA LEAF-INSPIRED MICROFLUIDIC PATCH FOR HIGHLY EFFICIENT SWEAT COLLECTION AND ANALYSIS

Yifan Li^{1,2}, Sixuan Duan^{1,2}, Shuhe Liu¹, Kai Hoettges^{1,2}, Quan Zhang^{1,2}, Mark Leach^{1,2}, and Pengfei Song^{1,2} ¹Xi'an Jiaotong-Liverpool University, CHINA and ²University of Liverpool, UK

Session 1C4 - Wearable and Diagnosis (continued)

17:25 TEOS-COATED SERS MASK PATCH FOR LUNG CANCER BIOMARKER DETECTION IN EXHALED BREATH AEROSOL

Sejin Lee, Sangyeon Lee, and Ki-hun Jeong Korea Advanced Institute of Science and Technology (KAIST), KOREA

17:45 QUANTUM SENSING MEETS LAB-ON-A-CHIP

Robin D. Allert¹, Fleming Bruckmaier¹, Nick R. Neulig¹, Phillip Amrein², Sebastian Littin², Fabian A. Freire-Moschovitis¹, Kristina S. Liu¹, Karl D. Briegel¹, Claudia Schrepel³, Phillipp Schätzle⁴, Peter Knittel⁵, Martin Hermans³, Maxim Zaitsev², and Dominik B. Bucher¹

1 Technical University of Munich, GERMANY, ²University Medical Center Freiburg, GERMANY, ³LightFab GmbH, GERMANY,

4 University of Freiburg, GERMANY, and ⁵Fraunhofer Institute for Applied Solid State Physics, GERMANY

18:05	Adjourn for the Day
18:15 - 19:45	Student Mixer
18:15 - 22:30	Women in Microfluidics Event

TUESDAY AT A GLANCE

	CLGDAL	AI A GEA		
08:15-08:30	Announcements			
08:30-09:15	Plenary Presentation III Manabu Tokeshi – <i>Hokkaido University, JAPAN</i>			
09:15-09:35	Lab on a Chip and Dolomite – Pioneers of Miniaturization Lectureship Prize and Presentation			
09:35-09:50	Transition			
09:50-11:10	Session 2A1 Session 2B1 Session 2C1 Cardiac & Pathogens Electrochemical Stem-Derived Cells Analysis Detection			
11:10-11:40	Break: Exhibit and Poster Inspection			
11:20-11:40	Science Speed Datin	ng		
11:40-12:40	Special Focus Session – Organoids			
	SPEAKERS Leonora Bužańska and Milica Radisic			
12:40-13:50	Lunch			
12:45-13:45	Industrial Stage 2			
13:50-15:10	Session 2A3 Vascularization- on-a-Chip	Session 2B3 Droplets	Session 2C3 Bacteria Analysis	
15:10-17:10	Poster Session 2 and Exhibit Inspection			
16:40-17:10	Break			
17:10-18:40	Session 2A4 Cell/Organ- on-a-Chip I	Session 2B4 Optical Detection	Session 2C4 Single Cell Analysis III	
	KEYNOTE Agnieszka Żuchowska	KEYNOTE Wouter van der Wijngaart	KEYNOTE Aram Chung	

TUESDAY, 17 OCTOBER

08:15 - 08:30 Announcements

Plenary Presentation III

Chair: Chuck Henry, Colorado State University, USA

Hall C

08:30 DEVELOPMENT OF FUNCTIONAL LIPID NANOPARTICLES USING MICROFLUIDIC DEVICES

Manabu Tokeshi

Hokkaido University, JAPAN

Lab on a Chip and Dolomite - Pioneers of Miniaturization Lectureship Prize and Presentation

Hall C

09:15 DEVELOPING HYBRID MICROFLUIDIC / MICROELECTRONIC CHIPS TO REVOLUTIONIZE DISEASE DIAGNOSTICS AND DRUG MANUFACTURING

David Issadore
University of Pennsylvania, USA

09:35 - 09:50 Transition

Session 2A1 - Cardiac & Stem-Derived Cells Chair: Shoji Takeuchi, *University of Tokyo, JAPAN*

Hall C

09:50 NOVEL LAB-ON-A-CHIP SYSTEM: MECHANICAL STIMULATION OF CARDIAC CELLS VIA MAGNETIC NANOFIBERS AND ALTERNATING MAGNETIC FIELDS

Dominik Kołodziejek, Oliwia Tadko, Marcin Drozd, Michał Wojasiński, Iwona Łopianiak, and Elżbieta Jastrzębska Warsaw University of Technology, POLAND

10:10 THE HYBRID CANTILEVER OF CONDUCTIVE GRAPHENE AND SU-8 FOR IMPROVING THE MATURITY AND ELECTRICAL COUPLING OF CARDIOMYOCYTES

Longlong Li¹, Jong-Yun Kim¹, Daeyun Lim², Chil-Hyoung Lee², and Dong-Weon Lee¹ ¹ Chonnam National University, KOREA and

10:30 PULSE FREQUENCY-DEPENDENT MATURATION OF HUMAN IPS-DERIVED CARDIAC MICROFIBER BY ELECTRICAL STIMULATION

Akari Masuda¹, Jumpei Muramatsu¹, Shun Itai¹, Yuta Kurashina², Shugo Tohyama¹, and Hiroaki Onoe¹

¹Keio University, JAPAN and ²Tokyo University of Agriculture and Technology, JAPAN

10:50 LABEL-FREE SINGLE CELL IMPEDANCE ANALYSIS OF IPSC-DERIVED SPINAL CORD PROGENITOR CELLS FOR RAPID SAFETY AND EFFICACY PROFILING

Linwei He¹, Jerome Tan^{1,2}, Shi Yan Ng³, King Ho Holden Li¹, Jongyoon Han^{2,4}, Sing Yian Chew^{1,2}, and Han Wei Hou^{1,2}

¹Nanyang Technological University, SINGAPORE, ²Singapore-MIT Alliance for Research and Technology (SMART), SINGAPORE, ³Agency for Science, Technology and Research (A*STAR), SINGAPORE, and ⁴Massachusetts Institute of Technology, USA

²Korea Institute of Industrial Technology, KOREA

Session 2B1 - Pathogens Analysis

Chair: Yoon-Kyoung Cho, IBS (Institute for Basic Science), KOREA

Auditorium

09:50 PORTABLE HIGHLY MULTIPLEXED PROBE-MELT PCR PLATFORM FOR RAPID IDENTIFICATION AND ANTIMICROBIAL RESISTANCE GENOTYPING

Fan-En Chen, Alexander Trick, and Jeff Wang Johns Hopkins University, USA

10:10 ON-DISC DNA EXTRACTION AND LAMP AMPLIFICATION FOR PLANT PATHOGEN DETECTION ENABLED BY DIGITAL ROTATIONALLY ACTUATED VALVES

David Kinahan¹, Rohit Mishra¹, Lourdes Julius¹, Jack Condon¹, Patricija Pavelskopfa¹, Philip Early¹, Matthew Dorian¹, Katarina Mrvova¹, Grace Henihan¹, Faith Mangwanya¹, Tanya Dreo², and Cor Schoen³

¹ Dublin City University, IRELAND, ² National Institute of Biology, SLOVENIA, and ³ Wageningen University Research, NETHERLANDS

10:30 MICROFLUIDIC DEVICE COUPLED WITH PLASMONIC HOT-SPOT CATALYSIS FOR RAPID PATHOGEN NUCLEIC ACID DETECTION

Tamer AbdElFatah, Mahsa Jalali, Sripadh Guptha Yedire, Imman I. Hosseini, Carolina del Real Mata, Haleema Khan, Seyed Vahid Hamidi, Olivia Jeanne, Roozbeh Siavash Moakhar, Myles Mclean, Dhanesh PatelZhen Wang, Geoffrey McKay, Mitra Yousefi, Dao Nguyen, Silvia M. Vidal, Chen Liang, and Sara Mahshid McGill University. CANADA

10:50 ELECTROSTATIC MICROFILTRATION-BASED ENRICHMENT OF LOW-ABUNDANCE PATHOGENS FROM LARGE-VOLUME SAMPLES IMPROVES THE DETECTION PERFORMANCE OF AMPLIFICATION-FREE NANOPORE SEQUENCING

Yaoping Liu¹, Patrina Wei Lin Chua¹, Sharon Yan Han Ling¹, Joshua Raymond¹, James Strutt¹, Cheryl Siew Choo Chan¹, Peiying Ho¹, Megan Mcbee¹, Rohan Williams^{1,2}, Stacy L. Springs^{1,3}, and Jongyoon Han^{1,3}

1 Singapore - MIT Alliance for Research and Technology (SMART),

¹Singapore - MIT Alliance for Research and Technology (SMART), SINGAPORE, ²National University of Singapore, SINGAPORE, and ³Massachusetts Institute of Technology (MIT), USA

Session 2C1 - Electrochemical Detection Chair: Elizaveta Vereshchagina, SINTEF Digital, NORWAY

Ballroom B

09:50 ON-CHIP ELECTROCHEMICAL SENSING WITH ENHANCED DETECTING SIGNAL DUE TO CONCENTRATION-POLARIZATION BASED ANALYTE PRECONCENTRATION

Sinwook Park¹, Daniel Kaufman², Hadar Ben-Yoav², and Gilad Yossifon¹

¹Tel Aviv University, ISRAEL and ²Ben-Gurion University of the Negev, ISRAEL

Session 2C1 - Electrochemical Detection (continued)

10:10 SUPER-NERNSTIAN PHOSPHORUS ION SENSITIVE FIELD EFFECT TRANSISTOR VIA EUROPIUM ION PROBE

Yingming Xu, Peng Zhou, Terrence Simon, and Tianhong Cui University of Minnesota, USA

10:30 SINGLE-CELL ELECTRIC IMPEDANCE SENSOR BASED ON INTEGRATED CIRCUIT CHIP

Wenhao Hui¹, Aman Lyu¹, Yingying Liu¹, Pui-In Mak¹, P. Martins Rui¹², K-Meng Lei¹, and Yanwei Jia¹

¹University of Macau, CHINA and ²Universidade de Lisboa, PORTUGAL

10:50 POINT-OF-CARE NUCLEIC ACID TESTING WITH A ONE-STEP BRANCHED DNA-BASED BIOSENSOR

Xueqi Wang and Han Wang Tsinghua University, CHINA

11:10 - 11:40 Break: Exhibit and Poster Inspection

11:20 - 11:40 Science Speed Dating

Special Focus Session - Organoids

Chair: Pilnam Kim, Korea Advanced Institute of Science & Technology (KAIST), KOREA

Hall C

11:40 EMERGING HUMAN BRAIN ORGANOID FIELD TO MODEL EARLY DEVELOPMENT AND PATHOLOGY

Leonora Bużańska

Polish Academy of Sciences, POLAND

12:10 ORGANOIDS AND ORGANS-ON-A-CHIP: FROM TOXICITY TESTING TO PERSONALIZED MEDICINE

Milica Radisic

University of Toronto, CANADA

12:40 - 13:50 Lunch

Industrial Stage 2

Chair: Guillaume Mottet, Sanofi, FRANCE

Auditorium

12:45 2a - BIOCOMPATIBLE, HIGH- RESOLUTION, 3D PRINTING IN THE PRESENCE OF LIVING CELLS

Henrik Akesson

UpNano GmbH, AUSTRIA

13:05 2b - TWO-PHOTON-POLYMERIZATION AS THE KEY ENABLING

TECHNOLOGY FOR LIFE SCIENCES

Alexander Legant

Nanoscribe GmbH & Co. KG, GERMANY, AUSTRIA

13:25 2c - A GENERIC MICROFLUIDIC CONNECTION SYSTEM BECOMES A REALITY

Henne van Heeren

The Microfluidics Association, NETHERLANDS

Session 2A3 - Vascularization-on-a-Chip

Chair: Yi-Chin Toh, Queensland University of Technology, AUSTRALIA

Hall C

A VASCULARIZED MULTI-COMPOSITION TUMOR ARRAY 13:50 **BIOPRINTED ON A MICROFLUIDIC CELL CULTURE AND** DRUG SCREENING SYSTEM FOR MULTIVARIABLE ANALYSIS

Gihvun Lee, Soo Jee Kim, and Je-Kvun Park Korea Advanced Institute of Science and Technology (KAIST), KOREA

PERSONALIZED ARTERIAL-WALL-ON-A-CHIP FOR ASSESSMENT 14:10 OF VASCULAR DYSFUNCTION AND RISK STRATIFICATION IN **TYPE 2 DIABETES MELLITUS**

Andrew Mark Choong^{2,3}, Rinkoo Dalan⁴, Roger Foo^{2,3}, Derek Hausenloy^{5,6}, and Han Wei Hou^{1,4} ¹Nanyang Technological University, SINGAPORE, ²National University of Singapore, SINGAPORE, 3 National University Heart Centre, SINGAPORE, ⁴Tan Tock Seng Hospital, SINGAPORE, ⁵Duke-National University of Singapore Medical School, SINGAPORE, and 6 National Heart Research Institute, SINGAPORE

Hiromi Takahashi¹, Hong Boon Ong¹, Chengxun Su¹, Rijan Gurung²,

14:30 A VASCULAR MICROPHYSIOLOGICAL SYSTEM WITH A DEFINED INJURY SITE FOR COAGULATION

Halston Deal^{1,2}, Jack Twiddy^{1,2}, Kimberly Nellenbach^{1,2}, Anastasia Sheridan^{1,2}, Ashley Brown^{1,2}, and Michael Daniele^{1,2} ¹North Carolina State University, USA and ²University of North Carolina, Chapel Hill, USA

ENGINEERING AUTOLOGOUS VASCULARIZED THROMBUS IMPLANTS 14:50 FOR ENHANCING CUTANEOUS WOUND HEALING

Su Hyun Jung, Bong Hwan Jang, Seyong Kwon, Sung Jin Park, Tae-Eun Park, and Joo H. Kang Ulsan National Institute of Science and Technology (UNIST), KOREA

Session 2B3 - Droplets

Chair: Aaron Wheeler, University of Toronto, CANADA

Auditorium

13:50 HIGH-THROUGHPUT DROPLET-PRINTING OF CONCENTRATION GRADIENTS FOR MULTIMODAL FLUORESCENCE- AND MALDI-MS ANALYSIS

Maximilian Breitfeld, Claudius L. Dietsche, Mario A. Saucedo-Espinosa, Simon F. Berlanda, and Petra S. Dittrich ETH Zürich, SWITZERLAND

14:10 DIGITAL DETECTION OF TUMOR-DERIVED EXTRACELLULAR VESICLES VIA CHARGE-INDUCED FUSION

Elizabeth Maria Clarissa^{1,2}, Sumit Kumar^{1,2}, and Yoon-Kyoung Cho^{1,2} ¹Ulsan National Institute of Science and Technology (UNIST), KOREA and ²Institute of Basic Science (IBS), KOREA

14:30 STIMULI-RESPONSIVE DNA ORIGAMI MICROCAPSULES

Nagi Yamashita¹, Marcos K. Masukawa¹, Mayumi Chano¹, Yusuke Sato², Kanta Tsumoto³, Kenichi Yoshikawa⁴, and Masahiro Takinoue¹ ¹Tokyo Institute of Technology, JAPAN, ²Kyushu Institute of Technology, JAPAN, ³Mie University, JAPAN, and ⁴Kyoto University, JAPAN

14:50 VOICEPRINT FOR IDENTIFYING DRIPPING-JETTING TRANSITION IN A COAXIAL MICROFLUIDIC DEVICE

Peng-Nian Chen, Jin-Jia Hu, and Chia-Hung D. Tsai National Yang Ming Chiao Tung University, TAIWAN

> Session 2C3 - Bacteria Analysis Chair: Catherine Villard, CNRS, FRANCE

Ballroom B

13:50 MICROFLUIDIC CHANNELS FOR ANALYSIS OF FLAGELLAR WRAPPING MOTION OF BACTERIA

Yoshiki Shimada, Aoba Yoshioka, Daisuke Nakane, and Tetsuo Kan University of Electro-Communications, JAPAN

14:10 A NOVEL OPTICAL-ELECTROCHEMICAL LAB-ON-A-CHIP FOR BIOLOGICAL BEHAVIOR ACTIVATION AND MONITORING IN SINGLE BACTERIAL CELLS

Daniel Kaufman¹, Chen Chen-Yu², Tsao Chen-Yu², Zhao Zhiling², Avia Lavon¹, Gregory F. Payne², William E. Bentley², and Hadar S. Ben-Yoav¹ ¹Ben-Gurion University in the Negev, ISRAEL and

²University of Maryland, USA

Session 2C3 - Bacteria Analysis (continued)

14:30 A MICROFLUIDIC 96-WELL ELECTROPORATION DEVICE FOR AUTOMATED. HIGH-THROUGHPUT BACTERIAL GENETIC ENGINEERING

Po-Hsun Huang, Sijie Chen, and Cullen R. Buie Massachusetts Institute of Technology, USA

REAL-TIME IN-SITU BACTERIAL GROWTH MONITORING USING 14:50 MINIATURIZED MRI SYSTEM

Qi Zhou¹, Shuhao Fan¹, Ka-Meng Lei¹, Donhee Ham², Rui P. Martins^{1,3}, and Pui-In Mak1

¹University of Macau, MACAO, ²Harvard University, USA, and ³Universidade de Lisboa, PORTUGAL

15:10 - 17:10

Poster Session 2 and Exhibit Inspection

Presentations are listed by topic category with their assigned number starting on page 45.

16:40 - 17:10 Break

Session 2A4 - Cell/Organ-on-a-Chip I

Chair: Albert van den Berg, University of Twente, NETHERLANDS

Hall C

17:10 KEYNOTE PRESENTATION

CELL AND ORGAN-ON-CHIP APPROACHES IN CANCER RESEARCH Agnieszka Żuchowska

Warsaw University of Technology, POLAND

17:40 UNIVERSAL, HIGH-TROUGHPUT PLATFORM FOR THE MONITORING OF CELL BEHAVIOURS CONTROLING FUNDAMENTAL **CELL INTERACTIONS**

Enrique Azuaje-Hualde, Naiara Lartitegi-Meneces, Juncal Alonso-Cabrera, Yara Alvarez Braña, Marian M. de Pancorbo, Fernando Benito-López, and Lourdes Basabe-Desmonts University of the Basque Country, SPAIN

18:00 SEMI TUBULAR ORGAN-ON-CHIP WITH TUBELESS PERFUSION

Blanca del Pozo¹, Marta Ollé², Jonatan Cucala², Lourdes Gombay², Pooya Azizian1, and Joan M. Cabot1

¹Leitat Technological Center, SPAIN and ²ReadyCell SL, SPAIN

OPEN MICROFLUIDIC PLATFORM FOR CO-CULTURING TUMOR 18:20 SPHEROIDS AND ENDOTHELIAL CELLS IN A 3D ENVIRONMENT

Jooyoung Ro^{1,2}, Junyoung Kim^{1,2}, and Yoon-Kyoung Cho^{1,2} ¹Ulsan National Institute of Science and Technology (UNIST), KOREA and ²Institute for Basic Science (IBS), KOREA

Session 2B4 - Optical Detection

Chair: Fernando Benito López, University of the Basque Country, SPAIN

Auditorium

17:10 KEYNOTE PRESENTATION

ADVANCEMENTS IN MICROFLUIDICS: CELL BIOPSIES, DIAGNOSTICS, AND PROGRAMMABLE MATTER

Wouter van der Wijngaart

KTH Royal Institute of Technology, SWEDEN

17:40 NON-INVASIVE INTERFERENCE-BASED PROBE OF THE NANO-SCALE SURFACE ROUGHNESS OF LIVING CELLS

Jose C. Contreras-Naranjo, Arul Jayaraman, and Victor M. Ugaz *Texas A&M University, USA*

18:00 CRITICALLY AMPLIFIED HYDROGEL SENSORS FOR BIOCHEMICAL DETECTION

Haitao Zhao^{1,2}, Sijun Pan², and Huilin Shao² ¹Northwestern Polytechnical University, CHINA and ²National University of Singapore, SINGAPORE

18:20 DUAL-TARGET MICROFLUIDIC SYSTEM INTEGRATED WITH AN OPTICAL DETECTION MODULE FOR AUTOMATIC DIAGNOSIS OF RHEUMATOID ARTHRITIS

Kuan-Yu Chen¹, Gwo-Bin Lee¹, Yi-Cheng Tsai¹, Feng-Chih Kuo², Mel S. Lee³, and Chih-Chien Hu⁴

¹ National Tsing Hua University, TAIWAN, ² Kaohsiung Chang Gung Memorial Hospital, TAIWAN, ³ Paochien Hospital, TAIWAN, and ⁴ Chang Gung Memorial Hospital, TAIWAN

Session 2C4 - Single Cell Analysis III Chair: Thomas Laurell, *Lund University, SWEDEN*

Ballroom B

17:10 KEYNOTE PRESENTATION

MICROFLUIDIC PLATFORMS FOR IMMUNOTHERAPY AND GENOME EDITING

Aram Chung

Korea University, KOREA

17:40 MULTI-STEP DROPLET MICROFLUIDIC PLATFORM FOR HIGH-CONTENT SINGLE-CELL SEQUENCING

Tomasz S. Kaminski^{1,2}, Joachim De Jonghe^{2,3}, and Florian Hollfelder²
¹University of Warsaw, POLAND, ²University of Cambridge, UK, and
³Francis Crick Institute, UK

18:00 AN AUTOMATED SINGLE-CELL MICROFLUIDIC PLATFORM FOR MONOCLONAL ANTIBODY DISCOVERY

Fatemeh Ahmadi¹, Hao Tran¹, Natasha Letourneau¹, Samuel R. Little¹, Annie Fortin², Anna Moraitis², and Steve C.C. Shih¹ ¹ Concordia University, CANADA and ² National Research Council Canada. CANADA

Session 2C4 - Single Cell Analysis III (continued)

18:20 SINGLE-CELL ELECTROKINETICS REVEALS SURFACE-MEDIATED ATTACHMENT BETWEEN ALGAE AND BACTERIA

Hyungseok Kim¹, Qianru Wang², Rhona K. Stuart³, Xavier Mayali³, and Cullen R. Buie¹

¹Massachusetts Institute of Technology, USA, ²Stanford University, USA, and ³Lawrence Livermore National Laboratory, USA

18:40 Adjourn for the Day

WEDNESDAY AT A GLANCE

08:15-08:30	Announcements				
08:30-09:15	Plenary Presentation IV Bogusław Buszewski – <i>Mikolaj Kopernik University Torun, POLAND</i>				
09:15-09:30	Transition				
09:30-10:30	Session 3A1 Cell/Organ- on-a-Chip II	Session 3B1 Biomolecular Detection II	Session 3C1 Micromixers & Microreactors		
10:30-11:00	Break: Exhibit and Poster Inspection				
11:00-12:00	Session 3A2 Nucleid Acid Analysis	Session 3B2 Biohybrid Microrobots	Session 3C2 Separation		
12:00-13:05	Lunch				
12:05-12:45	Industrial Stage 3				
13:05-13:50	Plenary Presentation V Lydia L. Sohn – <i>University of California, Berkeley, USA</i>				
13:50-14:00	MicroTAS 2024 Announcement				
14:00-16:00	Poster Session 3 and Exhibit Inspection				
15:30-16:00	Break				
16:00-17:30	Session 3A4 Neurobiology & Neuroscience	Session 3B4 Point-of-Care	Session 3C4 3D Printing		
	KEYNOTE Ashley E. Ross	KEYNOTE Jacqueline Linnes	KEYNOTE Rosanne Guijt		
19:00-24:00	Conference Banquet				

WEDNESDAY, 18 OCTOBER

08:15 - 08:30 Announcements

Plenary Presentation IV

Chair: Zbigniew Brzózka, Warsaw University of Technology, POLAND

Hall C

08:30 BIOANALYTICS FROM MICRO- TO NANO- DIMENSION

Bogusław Buszewski

Mikolaj Kopernik University Torun, POLAND

09:15 - 09:30 Transition

Session 3A1 - Cell/Organ-on-a-Chip II

Chair: Thomas Gervais, Polytechnique Montreal, CANADA

Hall C

09:30 A CELL WRAPPING SEEDING TECHNIQUE TO CONSTRUCT TUBULAR ORGAN-ON-A-CHIP MODELS

Jing Nie, Sha Lou, Andreas M.A.O. Pollet, Manon van Vegchel, Carlijn Bouten, Jaap M.J. den Toonder *Eindhoven University of Technology, NETHERLANDS*

09:50 USING SELF-ASSEMBLY AND MIGRATION TO FORM TUBULAR TISSUE ENGINEERED IN VITRO MODELS OF BIOLOGICAL BARRIERS

Seyedaydin Jalali and Ponnambalam R. Selvaganapathy McMaster University, CANADA

10:10 NANOWIRE EMBEDDED CONDUCTING DIAPHRAGMS FOR COUPLING ELECTRICAL CUES WITH MECHANICAL STIMULATION TO PROMOTE INTERCELLULAR COMMUNICATION

Abdullah-Bin Siddique, Aditya Rane, and Nathan Swami University of Virginia, USA

Session 3B1 - Biomolecular Detection II

Chair: Gwo-Bin "Vincent" Lee, National Tsing Hua University, TAIWAN

Auditorium

09:30 TWO-STAGE TUBERCULOSIS DIAGNOSTICS FROM A SINGLE SAMPLE: COMBINING CENTRIFUGAL MICROFLUIDICS AT THE POINT-OF-CARE WITH SUBSEQUENT COMPREHENSIVE NGS ANTIBIOTIC RESISTANCE PROFILING

Judith Schlanderer¹, Jan Lüddecke^{1,2}, Andrey Golubov⁴, Wolfgang Grasse⁵, Thomas A. Kohl⁶, Christoph Metzger-Boddien⁵, Stefan Niemann⁶, Claudia Pilloni⁴, Sara Plesnik⁴, Bijendra Raya⁷, Bhawana Shresta⁷, Roland Zengerle^{1,2}, Markus Beutler⁴, Harald Hoffmann^{3,4}, and Nils Paust^{1,2}

¹Hahn-Schickard, GERMANY, ²University of Freiburg, GERMANY,

³SYNLAB Gauting, GERMANY, ⁴IML Red GmbH, GERMANY,

⁵gerbion, GERMANY, ⁶Research Center Borstel, GERMANY, and

7 Nepal Anti-Tuberculosis Association, NEPAL

09:50 COMPETITVE PCR PLATFORM FOR PRECISE NUCLEIC ACID QUANTIFICATION

Reya Ganguly and Chang-Soo Lee Chungnam National University, KOREA

10:10 INTEGRATION OF ENZYMATICDNA SYNTHESIS AND SEQUENCING ON DIGITAL MICROFLUIDICS FOR AUTOMATIC INFORMATION STORAGE

Huimin Zhang Xiamen university, CHINA

Session 3C1 - Micromixers & Microreactors Chair: Per Augustsson, Lund University, SWEDEN

Ballroom B

09:30 SPATIOTEMPORALLY GENERATED MICROVORTEXES WEAVE LAMINAR FLOW

Makoto Saito, Niko Kimura, Yoko Yamanishi, and Shinya Sakuma Kyushu University, JAPAN

09:50 DNA-POWERED MULTITARGET STIMULI-RESPONSIVE GEL SENSOR FOR THE SENSING OF HISTAMINE AND CAFFEINE

Satofumi Kato¹, Yurika Ishiba¹, Masahiro Takinoue², and Hiroaki Onoe¹ *Keio University, JAPAN and ²Tokyo Institute of Technology, JAPAN*

10:10 PREPARATION OF MONODISPERSE DNA GELS USING VIBRATION-INDUCED FLOW

Zhitai Huang¹, Kanji Kaneko¹, Ryotaro Yoneyama¹, Takeshi Hayakawa¹, Masahiro Takinoue², and Hiroaki Suizuki¹

¹ Chuo University, JAPAN and ² Tokyo Institute of Technology, JAPAN

10:30 - 11:00 Break: Exhibit and Poster Inspection

Session 3A2 - Nucleid Acid Analysis Chair: Jean-Louis Viovy, Institut Curie/CNRS, FRANCE

Hall C

11:00 UTILIZING SPATIALLY-RESOLVED AND MULTIPLEXED MICRORNA QUANTIFICATION TO PREDICT DRUG RESISTANCE IN BRCA1 MUTANT TUMORS AND PREDICT THE EFFICACY OF COMBINATION THERAPY

Omar N. Mohd¹, Yu J. Heng², Gerburg M. Wulf², Frank J. Slack², and Patrick S. Doyle¹

¹Massachusetts Institute of Technology, USA and

11:20 MICROFLUIDICS-MEDITATED CRISPR/CAS9 DELIVERY: THE DROPLET CELL PINCHER (DCP) PLATFORM FOR EFFICIENT GENOME EDITING

You-Jeong Kim, Da Young Yun, Ha-Sung Lee, Cheulhee Jung, and Aram J. Chung Korea University, KOREA

11:40 EMULSION-FREE DIGITAL PCR WITH PERMEABILITY-ENGINEERED HYDROGEL CAPSULES

Jie Li and Yifan Liu Shanghaitech University, CHINA

² Harvard Medical School, USA

Session 3B2 - Biohybrid Microrobots

Chair: Jens Ducrée, Dublin City University, IRELAND

Auditorium

11:00 AN ANTAGONISTIC PAIR OF 3D CARDIAC RING TISSUES FOR SELF-BEATING BIOHYBRID ROBOT

Tomohiro Morita, Minghao Nie, and Shoji Takeuchi *University of Tokyo, JAPAN*

11:20 ELEVATED VWF LEVELS DRIVE THROMBUS INSTABILITY

Ava M. Obenaus¹, Dang Truong², Junmei Chen³, José A. López³, and Nathan J. Sniadecki¹

¹University of Washington, USA, ²University of Washington Bothell, USA, and ³Bloodworks Northwest Research Institute, USA

11:40 LIGHT CONTROLLED BIOHYBRID MICROBOTS

Nicola Pellicciotta^{1,2}, Ojus S. Bagal¹, Viridiana C. Sosa¹, Giacomo Frangipane^{1,2}, Gaszton Vizsnyiczai³, and Roberto Di Leonardo^{1,2}

¹ Sapienza University of Rome, ITALY, ² CNR Institute of Nanotechnology, ITALY, and ³ Eötvös Loránd Research Network, HUNGARY

Session 3C2 - Separation

Chair: Jonas Tegenfeldt, Lund University, SWEDEN

Ballroom B

11:00 DLD-BASED SINGLE CELL MASS CYTOMETRY

Yingqi Yang, Junwen Zhu, Huichao Chai, Peng Zhao, and Wenhui Wang Tsinghua University, CHINA

11:20 CONTINUOUS-FLOW SIZE FRACTIONATION OF SUBMICRON PARTICLES AND EXTRACELLULAR VESICLES WITH

TWO-DIMENSIONAL ELECTROPHORESIS IN AN ARTIFICIAL SIEVING ARRAY

Yang Bu, Jinhui Wang, Sheng Ni, Zechen Lu, Yusong Guo, and Levent Yobas Hong Kong University of Science and Technology, CHINA

11:40 ENGINEERING HIGH-THROUGHPUT ELECTROKINETIC FILTRATION FOR BIOMOLECULES ENRICHMENT

Mingyang Cui, Eric M. Wynne, and Jongyoon Han Massachusetts Institute of Technology, USA

12:00 - 13:05 Lunch

Industrial Stage 3

Chair: Frankie Myers, Mosaic Design Labs, USA

Auditorium

12:05 3a - PRIMO, BIOENGINNEERING TOOL FOR 2D AND

3D CELLULAR MODELS Matthieu Opitz

Alvéole - Sygnis, FRANCE

12:25 3b - MULTI-ELECTRODE ARRAYS FOR

CMOS BIOSENSORS

Christine Dufour

X-FAB MEMS Foundry GmbH, GERMANY

Plenary Presentation V

Chair: Séverine Le Gac, University of Twente, NETHERLANDS

Hall C

13:05 MICROFLUIDICS FOR ASSESSING BREAST CANCER SUSCEPTIBILITY
Lydia L. Sohn

University of California, Berkeley, USA

MicroTAS 2024 Announcement

Hall C

13:50 2024 Conference Chairs

- David Juncker, McGill University, CANADA
- Aaron Wheeler, University of Toronto, CANADA

14:00 - 16:00 Poster Session 3 and Exhibit Inspection

Presentations are listed by topic category with their assigned number starting on page 45.

15:30 - 16:00 Break

Session 3A4 - Neurobiology & Neuroscience Chair: Tza-Huei (Jeff) Wang, Johns Hopkins University, USA

Hall C

16:00 KEYNOTE PRESENTATION

EX VIVO ORGAN-ON-CHIP PLATFORMS FOR SENSING NEURON-IMMUNE COMMUNICATION

Ashley E. Ross

University of Cincinnati, USA

16:30 NEURAL STEM CELL SINGLE-CELL ISOLATION USING THE OPTOELECTRONIC MICROROBOT

Mohamed Elsayed¹, Harrison Edwards¹, Filip Stojic¹, Mahmoud A. Sakr¹, Christopher Bendkowski², Xi Chen^{1,3}, Laurent Menillo², Shuailong Zhang⁴, Michael Shaw², Cindi Morshead¹, and Aaron Wheeler¹ ¹University of Toronto, CANADA, ²University College London, UK, ³Harbin Institute of Technology, CHINA, and ⁴Beijing Institute of Technology, CHINA

16:50 MONITORING THE MITOCHONDRIAL NETWORK IN SH-SY5Y NEURONAL-LIKE CELLS UNDER THE INFLUENCE OF POTENTIAL DRUGS IN NEURODEGENERATIVE DISEASES

Damian Woznica, Ewelina Kalwarczyk, Julia Anchimowicz, Weronika Switlik, and Slawomir Jakiela Warsaw University of Life Sciences, POLAND

17:10 ELECTROCEUTICAL THERAPEUTIC TECHNOLOGY FOR AN INTRACTABLE PERIPHERAL NEUROPATHY USING A HIGH-THROUGHPUT SCREENING PLATFORM

Aseer Intisar¹, Hyun Young Shin^{1,2}, Hyun Gyu Kang¹, Woon-Hae Kim^{1,2}, Hanwoong Woo¹, Min Young Kim¹, Yu Seon Kim¹, Yun Jeoung Mo¹, Yun-II Lee¹, and Minseok S. Kim^{1,2}

¹ Daeau Gveonabuk Institute of Science & Technology

¹Daegu Gyeongbuk Institute of Science & Technology (DGIST), KOREA and ²CTCELLS Corp., KOREA

Session 3B4 - Point-of-Care

Chair: Michal Chudy, Warsaw University of Technology, POLAND

Auditorium

16:00 KEYNOTE PRESENTATION

PAPER-BASED MOLECULAR DIAGNOSTICS FOR PATHOGEN DETECTION AT THE EXTREME POINTS-OF-CARE

Jacqueline Linnes

Purdue University, USA

Session 3B4 - Point-of-Care (continued)

16:30 INTEGRATING A CHIMERIC BINJARI VIRUS NANOTECHNOLOGY INTO PAPER-BASED ASSAYS FOR POC DETECTION OF FLAVIVIRAL INFECTIONS IN VETERINARY APPLICATIONS

Ryan A. Johnston¹, Gervais Habarugira¹, Sally Isberg¹, Jessica Harrison¹, Mahali Morgan¹, Lorna Melville¹, Steven Davis¹, Christopher Howard¹, Charles Henry², Paul Hick¹, Peter Kirkland¹, Helle Bielefeldt-Ohmann¹, Roy A Hall¹, and Jody Hobson-Peters¹

¹University of Queensland, AUSTRALIA and ²Colorado State University, USA

16:50 ORIGAMI PAPER-BASED IMMUNOASSAY DEVICE WITH CRISPR/CAS12A SIGNAL AMPLIFICATION

Hikaru Suzuki, Guodong Tong, Yuki Hiruta, and Daniel Citterio Keio University, JAPAN

17:10 LAMP-MEDIATED CRISPR/CAS12A REACTION ON SSDNA IMMOBILIZED ITO-BASED EG-FET FOR RAPID HEPATITIS C VIRUS DETECTION

Hsin-Ying Ho, Wei-Sin Kao, Ling-Shan Yu, and Che-Hsin Lin National Sun Yat-sen University, TAIWAN

Session 3C4 - 3D Printing

Chair: Michael Breadmore, University of Tasmania, AUSTRALIA

Ballroom B

16:00 KEYNOTE PRESENTATION

3D PRINTING MEMBRANE INTEGRATED DEVICES

Rosanne Guiit

Deakin University, AUSTRALIA

16:30 TUNA STEP: A TUNABLE STEP EMULSIFICATION FOR DYNAMIC CONTROL OF DROPLET VOLUME TO 3D PRINT FUNCTIONALLY GRADED MATERIALS

Francesco Nalin¹, Maria Celeste Tirelli¹, Witold Postek²,

Piotr Garstecki¹, and Marco Costantini¹

¹Polish Academy of Sciences, POLAND and

²Broad institute of MIT and Harvard, USA

16:50 DIGITAL MANUFACTURING OF MICROFLUIDIC SYSTEMS USING ULTRALOW-COST LCD PHOTOPOLYMERIZATION 3D PRINTERS FOR WIDESPREAD ADOPTION

Houda Shafique, Vahid Karamzadeh, Yonatan Morocz, Andy Ng, and David Juncker McGill University, CANADA

17:10 HYBRID BIOFABRICATION OF MULTILAYERED HIGH-RESOLUTION CONSTRUCTS USING NATURAL AND LOW-VISCOSITY BIOINKS

Soo Jee Kim, Gihyun Lee, and Je-Kyun Park

Korea Advanced Institute of Science and Technology (KAIST), KOREA

17:30 Adjourn for the Day

Conference Banquet

Spodek

19:00 - 24:00

No conference is complete without a banquet. This year's banquet will be held in one of the most recognizable buildings in Poland, which is the "Spodek" in Katowice.

As of the printing of this program, there are a few tickets remaining for purchase. Please visit the Onsite Conference Registration Desk for availability.

Where scientists empower society

THURSDAY AT A GLANCE

INURSDAY AT A GLANCE			
08:30-09:15	Plenary Presentation VI Artur Chmielewski — National Aeronautics and Space Administration (NASA), USA and California Institute of Technology, USA		
09:15-09:35	Microsystems & Nanoengineering/Springer Nature – Test of Time Award		
09:35-09:50	Transition		
09:50-11:20	Session 4A1 Cell-on-a-Chip & Pathogens	Session 4B1 Microvalves & Delivering	Session 4C1 Space Exploration
	KEYNOTE Krzysztof Pyrć	KEYNOTE David Juncker	KEYNOTE Lourdes Basabe
11:20-11:50	Break and Exhibit Inspection		
11:50-12:30	Awards Ceremony CHEMINAS – Young Researcher Poster Awards Royal Society of Chemistry/Lab on a Chip – Widmer Poster Award Sensors (MDPI) – Outstanding Sensors and Actuators, Detection Technologies Poster Award IMT Masken und Teilungen AG – Microfluidics on Glass Poster Award NIST and Lab on a Chip – Art in Science Award Biomicrofluidics (AIP) – Best Paper Awards Elsevier Sensors and Actuators B. Chemical – Best Paper Award Microsystems & Nanoengineering/Springer Nature –		
	Best Talk Award		
12:30-12:45	Closing Remarks		
12:45	Conference Adjourns		

THURSDAY, 19 OCTOBER

Plenary Presentation VI

Chair: Jan Dziuban, Wrocław University of Science and Technology, POLAND

Hall C

08:30 HOW MICRODEVICES REVOLUTIONIZE DEEP SPACE EXPLORATION

Artur Chmielewski

National Aeronautics and Space Administration (NASA), USA and California Institute of Technology, USA

Microsystems & Nanoengineering/Springer Nature – Test of Time Award

Hall C

09:15 DESIGNING FOR TRANSLATION OF SINGLE-CELL BIOLOGY TOOLS

Amv E. Herr

University of California, Berkeley, USA

09:35 - 09:50 Transition

Session 4A1 - Cell-on-a-Chip Pathogens Chair: Victor Ugaz, Texas A&M University, USA

Hall C

09:50 KEYNOTE PRESENTATION

ADVANCED MODELS FOR COMPREHENSIVE UNDERSTANDING
OF VIRAL INFECTION

Krzysztof Pyrć

Jagiellonian University, POLAND

10:20 SARS-COV-2 ELICITS A DIFFERENTIAL INNATE IMMUNE RESPONSE IN HIPSC-DERIVED AIRWAY-ON-CHIP AND ALVEOLI-ON-CHIP MODELS

Sachin Yadav, Kazuya Fujimoto, Toru Takenaga, Yukiko Muramoto, Ryuta Mikawa, Koichi Igura, Senye Takahashi, Takeshi Noda, Shimpei Gotoh, and Ryuji Yokokawa Kyoto University, JAPAN

10:40 ADIPOSE TISSUE MICROPHYSIOLOGICAL SYSTEM TO STUDY OBESTIY-ASSOCIATED PATHOPHYSIOLOGY

Heejoeng Yoon, Jeong Kon Seo, and Tae-Eun Park
Ulsan National Institute of Science and Technology (UNIST), KOREA

11:00 ADRIAMYCIN-INDUCED GLOMERULOPATHY MODEL USING HIPSC-DERIVED PODOCYTES

Darryl Koh¹, Ayumu Tabuchi¹, Kensuke Yabuuchi^{2,3}, Yoshiki Sahara², Minoru Takasato^{2,4}, Kazuya Fujimoto¹, and Ryuji Yokokawa¹ * *Kyoto University, JAPAN,* ² *Institute of Physical and Chemical Research (RIKEN), JAPAN,* ³ *Osaka University, JAPAN, and* ⁴ *Kyoto University, JAPAN*

Session 4B1 - Microvalves & Delivering Chair: Jeroen Lammertyn, KU Leuven, BELGIUM

Auditorium

09:50 KEYNOTE PRESENTATION

DIGITAL MANUFACTURING OF FUNCTIONAL, READY-TO-USE MICROFLUIDIC SYSTEMS

David Juncker

McGill University. CANADA

Session 4B1 - Microvalves & Delivering (continued)

A SINGLE-MOLECULE VALVE ENABLED BY A FLEXIBLE 10:20 NANOFLUIDIC DEVICE

Nattapong Chantipmanee¹, Hiroto Kawagishi², Shun-ichi Funano³, Yo Tanaka3, and Yan Xu1,2

¹Osaka Metropolitan University, JAPAN, ²Osaka Prefecture University, JAPAN, and ³Institute of Physical and Chemical Research (RIKEN), JAPAN

INTEGRATED ON-CHIP GEL VALVES WITH HIGH EXPANSION RATE BY 10:40 USING PARTIAL CONSTRAINT TO SUBSTRATES

Kyoka Nakano¹, Yoshiyuki Yokoyama², and Takeshi Hayakawa¹ ¹Chuo University, JAPAN and ²Toyama Industrial Technology Research and Development Center, JAPAN

11:00 PROBING 3D TISSUE RHEOLOGY WITH A HIGH-THROUGHPUT MICROFLUIDIC ASPIRATION PIPETTE

Sylvain Landiech¹, Pierre Lapèze¹, Marianne Elias¹, Morgan Delarue¹, Clément Roux², Fabien Mesnilgrente¹, David Bourier¹, and Pierre Joseph¹ ¹LAAS - CNRS, FRANCE and ²Université Toulouse III, FRANCE

Session 4C1 - Space Exploration Chair: Nicolas Verplanck, CEA, FRANCE

Ballroom B

09:50 KEYNOTE PRESENTATION

TOWARDS UNIVERSAL ANALYTICAL PLATFORMS TO STUDY BIOLOGICAL SYSTEMS

Lourdes Basabe

University of the Basque Country, SPAIN

10:20 AN AUTOMATED AND MULTIPLEXING MICROFLUIDIC SYSTEM FOR IN-SITU BIOMARKER ANALYSIS FOR ASTRONAUT **HEALTH MONITORING**

Zachary Estlack¹, Matin Golozar², Anna L. Butterworth²,

Richard A. Mathies2, and Jungkyu Kim1

¹University of Utah, USA, and ²University of California, Berkeley, USA

MICROFLUIDIC PLATFORMS - NEW RESEARCH TOOLS FOR SPACE 10:40 BIOLOGY APPLICATIONS

Agnieszka Krakos (Podwin)¹, Patrycja Śniadek¹, Wojciech Kubicki¹, Dawid Przystupski2, Mateusz Psurski3, Marta Jurga4, Julita Kulbacka2, Rafał Walczak¹, and Jan Dziuban¹

¹Wrocław University of Science and Technology, POLAND, ²Wrocław Medical University, POLAND, 3 Polish Academy of Sciences, POLAND, and 4 Wrocław University of Environmental and Life Sciences, POLAND

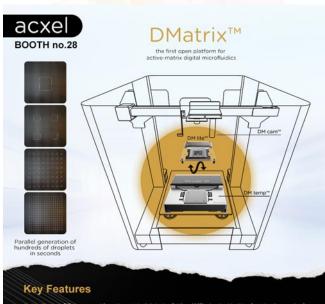
MICROFLUIDIC-BASED DIFFRACTED X-RAY TRACKING METHOD 11:00 FOR PRECISE RECORDING OF ION CHANNEL MOTION IN RESPONSE TO SEQUENTIAL CHEMICAL SOLUTION CHANGES

Yusuke Asagoe¹, Hirofumi Shimizu², and Yoshikazu Hirai¹ ¹Kvoto University, JAPAN and ²University of Fukui, JAPAN

11:20 - 11:50 **Break and Exhibit Inspection**

Awards Ceremony and Closing Remarks

Hall C


11:50 Award Ceremony

- CHEMINAS Young Researcher Poster Awards
- Royal Society of Chemistry/Lab on a Chip Widmer Poster Award
- Sensors (MDPI) Outstanding Sensors and Actuators, Detection Technologies Poster Award
- IMT Masken und Teilungen AG Microfluidics on Glass Poster Award
- NIST and Lab on a Chip Art in Science Award
- Biomicrofluidics (AIP) Best Paper Awards
- Elsevier Sensors and Actuators B. Chemical Best Paper Award
- Microsystems & Nanoengineering/Springer Nature Best Talk Award

12:30 Closing Remarks - MicroTAS 2023 Conference Chairs

- Zbigniew Brzózka Warsaw University of Technology, POLAND
- Elżbieta Jastrzębska Warsaw University of Technology, POLAND

12:45 Conference Adjourns

Active Matrix — Offering support for active-matrix digital microflusions, AMPrest series bloichips, featuring thousands of individually addressable electrodes. Stay shead with future scalability — upgradable to an astion-diming maga-pixels.

Presiston Maniputation — Master the maniputation of micro-droplets down to nanoliter scale, unlocking unparalleled meshallites in diminification and magnetic paralleled meshallites in the magnetic paralleled meshallites in diminification and magnetic paralleled meshallites and meshalli

Versatile Functionality.— Equipped with modular features, DMatrix ** ecosystem effortlessly meets diverse sample preparation needs, from DNA sequencing lib-prep to compound mixing.

Ease of Use — Designed with a user-friendly interface (DM ctrl) for seamless operation, letting you focus more or innovation and less on setup.

Microsystems & Nanoengineering

MicroSystems, MacroWorlds! Submit your research today.

Editor-in-Chief

Professor Yirong Wu, Academician of Chinese Academy of Sciences, Aerospace Information Research Institute, Chinese Academy of Sciences

Executive Editors-in-Chief

Professor Tianhong Cui, Member of the European Academy of Arts and Sciences, University of Minnesota

Professor Ian White, Member of the Royal Academy of Engineering, Bath University

Topics of Particular Interest

Including, but not limited to:

- Micro-nano sensors and actuators
- MEMS and NEMS materials, fabrication and packaging
- Applied sciences of micro-nano systems
- Micro-nano mechanics, structures and modeling

Microsystems & Nanoengineering Editorial Office No. 19, North 4th Ring Road West, Haidian District, Beijing, 100190, China

Tel: +86-10-58887222 Email: mine@aircas.ac.cn

www.nature.com/micronano

MONDAY 14:35 – 16:35

TUESDAY 15:10 – 17:10

WEDNESDAY 14:00 – 16:00

CLASSIFICATION

(last character of poster number)

- a Cells, Organisms and Organs on a Chip
- b Diagnostics, Drug Testing and Personalized Medicine
- c Fundamentals in Microfluidics and Nanofluidics
- d Integrated Microfluidic Platforms
- e Micro- and Nanoengineering
- f Sensors and Detection Technologies
- g Other Applications of Microfluidics
- h Late News

See poster floor plan on the page 125 of this program.

a - Cells, Organisms and Organs on a Chip

Bioinspired, Biomimetic and Biohybrid Devices

M001.a A 3D-PRINTED DEVICE FOR FOLDING STRING-SHAPED MUSCLE TISSUE TOWARD CULTURED MEAT PRODUCTION

Jung-Chun Sun¹, Byeongwook Jo¹, Yuya Morimoto^{1,2}, and Shoji Takeuchi¹

¹University of Tokyo, JAPAN and ²Waseda University, JAPAN

M002.a BIOINSPIRED INTESTINAL MODEL BASED ON DYNAMIC AND MULTI-SCALE CURVED SUBSTRATES

Valentin Chalut¹, Damien Le Roy², Delphine Delacour³, Anne-Laure Deman¹, and Caterina Tomba¹

¹Université Claude Bernard Lyon 1, FRANCE, ²Institut Lumière Matière, FRANCE, and ³Institut de Biologie du Développement de Marseille, FRANCE

M003.a HUMAN PLATELET MEMBRANE REACTOR FOR REMOVAL OF PATHOGENIC BIOFILMS ON NATURAL TEETH

Mamata Karmacharya^{1,2}, Sumit Kumar^{1,2}, and Yoon-Kyoung Cho^{1,2}

¹ Ulsan National Institute of Science and Technology (UNIST),

KOREA and ² Institute of Basic Science (CSLM-IBS), KOREA

M903.a A VESSEL ON CHIP MODEL TO STUDY THE ROLE OF SHEAR STRESS IN VASCULAR CONDITIONS

Swachhatoa Ghosh, Praphulla C. Shukla, and Soumen Das Indian institute of Technology, Kharagpur, INDIA

T001.a A LIVING SKIN DISPLAY THAT TELLS YOU WILL BE SICK

Jun Sawayama¹, Yuki Takayama^{1,3}, Shogo Nagata¹, Hoshimi Aoyagi¹, Aki Takimoto¹, Miki Takase², Miho Ogawa², Makoto Takeo², Koji Yano³, Shoji Takeuchi¹, Takashi Tsuji², and Hiroyuki Fujita^{3,4}

¹ University of Tokyo, JAPAN, ²Institute of Physical and Chemical Research (RIKEN), JAPAN, ³Canon Medical Systems Co., JAPAN, and ⁴Tokyo City University, JAPAN

TOO2.a CONSTRUCTION OF A SKIN-COVERED ROBOTIC FINGER WITH HYDROGEL SUBCUTANEOUS SUPPORT TOWARDS LONG-TERM OPERATION IN AIR

Keisuke Ohta¹, Minghao Nie¹, Haruka Oda¹, Yuya Morimoto^{1,2}, and Shoji Takeuchi¹

¹ University of Tokyo, JAPAN and ² Waseda University, JAPAN

T003.a MICROFLUIDIC CONSTRUCTION OF ARTIFICIAL CELLS WITH MULTIPLE DNA CONDENSATES AS ORGANELLE MIMIC

Ryotaro Yoneyama¹, Ryota Ushiyama¹, Tomoya Maruyama², Masahiro Takinoue², and Hiroaki Suzuki¹ ¹Chuo University, JAPAN and ²Tokyo Institute of Technology, JAPAN

W002.a CORE-SHELL HYDROGEL FIBERS USING INTERFACIAL POLYELECTROLYTE COMPLEXATION FOR CELL CULTURE APPLICATIONS

Yoshinobu Utagawa¹, Kosuke Ino¹, Masahiro Takinoue², and Hitoshi Shiku¹ ¹ Tohoku University, JAPAN and ² Tokyo Institute of Technology, JAPAN

W003.a REJUVENATING T CELLS TO BEAT CANCER USING ARTIFICIAL IMMUNE NICHES

Janet Huisman¹, Ansooya Bokil¹, Nadra Nilsen¹, Emma Haabeth¹, Naresh Veldurthi¹, Simon Sayer², Markus Lunzer², and Oyvind Halaas¹ Norwegian University of Science and Technology, NORWAY and ²UpNano GmbH, AUSTRIA

Cell Capture, Counting, & Sorting

MOO4.a A HIGH-THROUGHPUT AND MULTIFUNCTIONAL MICROFLUIDIC CHIP FOR RAPID ENRICHMENT OF CTMS AND CTC CLUSTERS

Chan-Hua Yeh¹, Hsinyu Yang¹,², Cian-Ling Wang¹, Hsien-Chih Peng¹, and Fan-Gang Tseng¹,²

¹National Tsing Hua University, TAIWAN and ²Academia Sinica, TAIWAN

M005.a CROSSOVER CELL MIGRATION MEASUREMENTS (CCM): COMPREHENSIVE OPTICAL AND ELECTRICAL CELL TRACKING

Karina Torres-Castro^{1,2}, Brian J. Nablo¹, and Darwin R. Reyes¹

1 National Institute of Standards and Technology, USA and

2 Theiss Research, USA

M006.a ELECTROHYDRODYNAMICS: A VERSATILE TECHNIQUE FOR SINGLE CELL DIAGNOSIS AND ITS APPLICATIONS ON METAL NANOPARTICLE LOCATING

Chih-Jie Li and Hsiang-Yu Wang National Tsing Hua University, TAIWAN

MOO7.a HIGH THROUGHPUT X-Y SPERM SORTING BY ELECTRIC FIELD GRADIENT IN A REVERSE MICRO FLOW

I-Jui Chen¹, Hsien-Chih Peng¹, Nian-Je Wu¹, Ren-Guei Wu¹, and Fan-Gang Tseng¹.²

¹National Tsing Hua University, TAIWAN and ²Academia Sinica, TAIWAN

M008.a INTEGRATED SERS- DROPLET MICROFLUIDICS PLATFORM FOR SINGLE CELL SORTING

Yuanshuai Zhu¹, William J. Peveler¹, Andrew Glidle¹, Zhugen Yang², and Huabing Yin¹

¹University of Glasgow, UK, and ²Cranfield University, UK

M009.a LOW-COMPLEX IMAGE-ACTIVATED CELL SORTING

Neus Godino, Tobias Gerling, Felix Pfisterer, Nina Hupf, Simone De Carli, and Michael Kirschbaum Fraunhofer IZI-BB, GERMANY

M010.a PH SORTING OF BACTERIA LADEN DROPLETS

Giulia Venturini, Donald A. Morrison, and David T. Eddington *University of Illinois, Chicago, USA*

M011.a SIMPLE AND ROBUST MICROFLUIDIC CAPTURE OF T CELLS AND ANALYSIS OF CD MARKERS

Yohan Choi, Woo-Joong Kim, Dongwoo Lee, Bum Joon Jung, Eui-Cheol Shin, and Wonhee Lee Korea Advanced Institute of Science and Technology (KAIST). KOREA

T004.a AUTONOMOUS CELL MANIPULATION SYSTEM BASED ON DEEP REINFORCEMENT LEARNING

Seiya Matsuda, Ta<mark>kaaki A</mark>be, and Yoshiaki Ukita *University of Yamanashi, JAPAN*

T005.a DROPLET MICROFLUIDIC SYSTEMS FOR HIGH-THROUGHPUT PASSIVE SELECTION AND ENRICHMENT OF BACTERIA PRODUCING BIOSURFACTANTS

Klaudia J. Staskiewicz^{1,2}, Maria Dabrowska², Lukasz Kozon^{1,2}, Lukasz Drewniak², and Tomasz S. Kaminski² ¹Polish Academy of Sciences, POLAND and ²University of Warsaw, POLAND

T006.a GELATIN METHACRYLATE AS A CELL-ENCAPSULATING HYDROGEL FOR IMAGE-BASED SINGLE-CELL SCREENING

Takeru Fukunaga¹, Shunya Okamoto¹, Takayuki Shibata¹, Tuhin S. Santra², and Moeto Nagai¹

¹Toyohashi University of Technology, JAPAN and ²Indian Institute of Technology, Madras, INDIA

T007.a HIGHLY ACCURATE MULTIPLEX FLUORESCENCE-ACTIVATED DROPLET SORTING PLATFORM

Wannes Verbist, Jolien Breukers, Sapna Sharma, Lotte Coelmont, Francesco Dal Dosso, Kai Dallmeier, and Jeroen Lammertyn KU Leuven, BELGIUM

TOO8.a LARGE-SCALE CELL CAPTURE ARRAYS ON SUSPENDED SILICON NITRIDE MEMBRANES

Jacek Lechowicz, Amir Tahmasebipour, Varoon Aluri, and Marc S. Chooljian *Mekonos Inc, USA*

T009.a MICROFLUIDICS DEVICES AS A TOOL TO STUDY MECHANISM OF TRANSFORMATION BETWEEN STREPTOCOCCUS PNEUMONIAE CELLS

Anna Borowska, Donald A. Morrison, and David T. Eddington *University of Illinois, Chicago, USA*

TO10.a RED BLOOD CELL DISTRIBUTION ON COMPLEX BIFURCATING NETWORKS

Jonatan Mac Intyre, Elizabath M. Nallukunnel Raju, Micaela Tavares Oliveira, Samin Nooranian, Irina Raykhel, Ilya Skovorodkin, Seppo Vainio, and Caglar Elbuken University of Oulu, FINLAND

TO11.a SINGLE CELL ANALYSIS OF INERTIAL MIGRATION BY TUMOR CELLS AND CLUSTERS

Jian Zhou, Alexandra Vorobyeva, Qiyue Luan, and Ian Papautsky University of Illinois. Chicago, USA

W004.a CELL PATTERNING ON CYTOPHOBIC SUBSTRATES TROUGH COMBINED PHYSICOCHEMICAL AND BIOCHEMICAL FUNCTIONALIZATIONS

Enrique Azuaje-Hualde¹, Job Komen², Juncal Alonso-Cabrera¹,
Albert van der Berg², Marian M. de Pancorbo¹, Andries van der Meer²,
Fernando Benito-López¹, and Lourdes Basabe-Desmonts¹

1 University of the Basque Country, SPAIN and
2 University of Twente, NETHERLANDS

W005.a EFFECTS OF MICROFLUIDIC SORTING ON CANCER CELLS

Esra Yilmaz, Zhimeng Fan, Jason P. Beech, Vinay Swaminathan, and Jonas O. Tegenfeldt Lund University, SWEDEN

W006.a GLASS-BOTTOM NANOWELLS FOR SINGLE CELL IMAGE CYTOMETRY

Samuel Berryman, Deasung Jang, Pan Deng, Kerryn Matthews, and Hongshen Ma *University of British Columbia, CANADA*

W007.a INTEGRATED LABEL-FREE BLOOD FRACTIONATION AND LEUKOCYTE CONCENTRATOR IN PMMA SPIRAL MICROFLUIDIC DEVICES

Kay Khine Maw^{1,2}, Sheng Yuan Leong¹, Wei Wang², and Han Wei Hou^{1,3}
¹ Nanyang Technological University, SINGAPORE, ² Singapore Institute of Manufacturing Technology (SIMTech), SINGAPORE, and ³ Nanyang Technological University, SINGAPORE

W008.a LEVERAGING THE ELASTIC DEFORMABILITY OF POLYDIMETHYLSILOXANE MICROFLUIDIC CHANNELS FOR EFFICIENT INTRACELLULAR DELIVERY

Hashim Alhmoud, Mohammed Alkhaled, Batuhan E. Kaynak, and Selim Hanay

Bilkent University, TURKEY

W009.a OPTOHYDRODYNAMIC TWEEZERS FOR SINGLE-CELL MANIPULATION AND ANALYSIS

Shreyas K Vasantham¹, Yurii Promovych¹, Piotr Garstecki¹, Abhay Kotnala^{1,2}, and Ladislav Derzsi¹ ¹Polish Academy of Sciences, POLAND and ²University of Houston, USA

W010.a SHEATH-AIDED INERTIAL SEPARATION OF BLOOD CELLS BY SIZE

Tianlong Zhang^{1,2}, Yaxiaer Yalikun², Yoichiroh Hosokawa², and Ming Li¹ Macquarie University, AUSTRALIA and ²Nara Institute of Science and Technology, JAPAN

W011.a SINGLE CELL DIFFERENTIATION ON A NOVEL ELECTRO MECHANO SENSING PLATFORM

Ishita Bansal, Nishant Sharma, and Prosenjit Sen Indian Institute of Science, INDIA

Cell-Culturing & Perfusion (2D & 3D)

M012.a 3D POROUS MICROFLUIDIC ARCHITECTURES FOR PERFUSABLE ENGINEERED HEART TISSUES

Aniruddha Paul, Tomas V. Dorp, Anne Leferink, Anke R. Vollertsen, Andries V. D. Meer, and Mathieu Odijk University of Twente, NETHERLANDS

M013.a AN INTEGRATED ELECTROTHERMAL PUMP FOR TAILORED PULSATILE VASCULAR CULTURE IN MICROPHYSIOLOGICAL SYSTEMS

Kai Zhao, Itaru Kawata, Yoshiyasu Ichikawa, and Masahiro Motosuke Tokyo University of Science, JAPAN

M014.a ELECTRODES ON POROUS MEMBRANES FOR DIELECTROPHORETIC ASSEMBLY AND IMPEDIMETRIC MEASUREMENT OF MODEL BARRIER TISSUES ON CHIP

Alexander P.M. Guttenplan and Darwin R. Reyes National Institute of Standards and Technology, USA

M015.a HYDROSTATIC PRESSURE AS A BIOMECHANICAL STIMULI ON HUVECS IN A 96-WELL-PLATE

David T. Eddington University of Illinois, Chicago, USA

M016.a MICROFLUIDIC HARVESTING OF SINGLE BREAST CANCER CELL-DERIVED SPHEROIDS FOR HIGH-THROUGHPUT CANCER STEM CELL-TARGETING DRUG SCREENING

Wenxiu Li
City University of Hong Kong, HONG KONG

M017.a OXYGEN CONSUMPTION RATE (OCR) CHARACTERIZATION OF SINGLE SPHEROIDS USING A MICROFLUIDIC PLATFORM AND FLUORESCENCE LIFETIME IMAGING MICROSCOPY

Santhosh Kannan^{1,2}, Chien-Chung Peng¹, and Yi-Chung Tung¹

1Academia Sinica, TAIWAN and ²National Tsing Hua University, TAIWAN

MO18.a THREE-DIMENSIONAL IN VITRO GUT-IMMUNE MODEL TO MIMIC PEYER'S PATCHES BASED ON BIOPRINTING

Jongho Park, Gihyun Lee, and Je-Kyun Park

Korea Advanced Institute of Science and Technology (KAIST), KOREA

T012.a A NEW LAB-ON-A-CHIP SYSTEM FOR MODELING VASCULARIZED OVARIAN CANCER TISSUE

Paulina Musolf, Magdalena Flont, Joanna Konopka, Agnieszka Żuchowska, and Elżbieta Jastrzębska Warsaw University of Technology, POLAND

TO13.a BATCH BAYESIAN OPTIMIZATION FOR IN VITRO SKELETAL MUSCLE TISSUE MATURATION WITH MULTIPLE STIMULATION PARAMETERS

Daiki Miyata¹, Keitaro Kasahara¹, Yuta Tokuoka¹, Yujin Taguchi¹, Takahiro Yamada¹, Akira Funahashi¹, Yuta Kurashina², and Hiroaki Onoe¹

¹Keio University, JAPAN and ²Tokyo University of Agriculture and Technology, JAPAN

T014.a EVALUATION OF POLYMETHYLPENTENE, AN OXYGEN PERMEABLE THERMOPLASTIC, FOR LONG-TERM ON-A-CHIP CELL CULTIVATION

Linda Sønstevold¹, Maciej Czerkies², Enrique Escobedo-Cousin¹, Slawomir Blonski², and Elizaveta Vereshchagina¹ ¹SINTEF Digital, NORWAY and ²Institute of Fundamental Technological Research, POLAND

TO15.a HYPOXIA ON A CHIP: ASSESSING THE CLINICAL HALLMARKS OF HYPOXIA ON NATURALLY HYPOXIC SPHEROIDS

Elena Refet-Mollof^{1,2,3}, Rodin Chermat^{1,2,3}, Philip Wong^{2,3,4,5}, and Thomas Gervais^{1,2,3}

¹Polytechnique Montréal, CANADA, ²Centre de recherche du Centre Hospitalier de l'Université de Montréal, CANADA, ³Institut du Cancer de Montréal, CANADA, ⁴Centre Hospitalier de l'Université de Montréal, CANADA, and ⁵Princess Margaret Cancer Centre, CANADA

TO16.a MICROFLUIDIC SYSTEM FOR MODELING THE VASCULARIZATION OF THE PANCREATIC ISLET MODEL

Patrycja Sokołowska, Magdalena Kopińska, Elżbieta Jastrzębska, and Zbigniew Brzózka Warsaw University of Technology, POLAND

T017.a POROUS MICROCHAMBER-INTEGRATED MICROPERFUSION SYSTEM FOR FORMATION, MORPHOLOGY CONTROL, AND OBSERVATION OF MULTICELLULAR AGGREGATES

Yusuke Araki, Mai Takagi, Rie Utoh, and Masumi Yamada Chiba University, JAPAN

TO18.a TOWARDS 3D CELL CULTURES ON-CHIP – TECHNOLOGICAL STUDIES OF NOVEL HYDROGEL MATRICES

Adrianna Cieślak¹, Agnieszka Krakos (Podwin)¹, Magdalena Łabowska¹, Julita Kulbacka².³, and Jerzy Detyna¹

¹Wrocław University of Science and Technology, POLAND, ²Wrocław Medical University, POLAND, and ³State Research Institute Centre for Innovative Medicine, LITHUANIA

W012.a AN EFFECTIVE METHOD TO PROMOTE THE MATURATION OF HUMAN IPSC CARDIOMYOCYTES USING A THIN POLYMER FILM

Yu-Hsiang Hsu¹, Hong-Wen Wang¹, Chia-Wei Liu¹, Ching-Ying Huang², Darien Z.H. Chan², and Patrick C.H. Hsieh^{1,2}

¹National Taiwan University, TAIWAN and ²Academia Sinica, TAIWAN

W013.a DEVELOPING RAPID SCAFFOLD-FREE CELL SHEET BIOFABRICATION TECHNIQUE AND ITS APPLICATION AS BUILDING BLOCKS OF COMPLEX 3D TISSUE CONSTRUCTS

Maedeh Khodamoradi and Ponnambalam R. Selvaganapathy McMaster University, CANADA

W014.a FABRICATION OF ROPE-LIKE AXON BUNDLE BY APPLYING DIAMOND-LIKE CARBON THIN FILM DEPOSITION

Tetsuo Endo and Masahito Ban Nippon Institute of Technology, JAPAN

W015.a MICROENGINEERING PAPER PLATFORM WITH MICROFLUIDIC DELIVERY FOR SPHEROIDS CRYOPRESERVATION AND DRUG TESTING

Ayoub Glia¹, Safeeya Alawadhi¹, Muhammedin Deliorman¹, Pavithra Sukumar¹, and Mohammad A. Qasaimeh^{1,2} ¹New York University, Abu Dhabi, UAE and ²New York University, USA

W016.a MYOBLAST CELL CULTURE ON EDIBLE BLOOD PLASMA-ALGINATE HYDROGEL MICROFIBERS FOR CULTURED MEAT APPLICATION Kensei Okada, Byeongwook Jo, Minghao Nie, and Shoji Takeuchi

Kensei Okada, Byeongwook Jo, Minghao Nie, and Shoji Takeuchi University of Tokyo, JAPAN

W017.a THE STUDY OF PRIMARY CELLS DIFFERENTIATION INTO CANCER-ASSOCIATED FIBROBLASTS (CAF) UNDER MICROFLUIDIC CONDITIONS

Magdalena Flont, Patrycja Sokolowska, and Elżbieta Jastrzębska Warsaw University of Technology, POLAND

W018.a UNLEASHING THE POTENTIAL OF CONTINUOUS UNIDIRECTIONAL PERFUSION: AN AUTOMATED SMART LID SYSTEM FOR LONG-TERM CULTURE OF BIOENGINEERED TISSUES

Sarah Heub¹, Stéphanie Boder-Pascher¹, Manon Garzuel¹, Charlotte Fonta¹, Ary Marsee², Hüseyin B. Atakan¹, Jonas Goldowsky¹, Réal Ischer¹, Diane Ledroit¹, Thomas M. Valentin¹, Kerstin Schneeberger², and Bart Spee²

¹CSEM SA, SWITZERLAND and ²Utrecht University, NETHERLANDS

Inter-& Intracellular Signaling, Cell Migration

MO19.a A BILAYERED TUMOR-VASCULAR MODEL IN DIGITAL MICROFLUIDIC CHIP FOR TUMOR CELL INTRAVASATION STUDY

Wenting Qiu^{1,2}, Wanqing Wu¹, Jinqing Huang², and Mengsu Yang¹

1 City University of Hong Kong, HONG KONG and ²Hong Kong
University of Science and Technology, HONG KONG

M020.a MIMICKING T CELL ACTIVATION AND MIGRATION IN RESPONSE TO CHEMOKINE GRADIENT IN A MICROSYSTEM

Parvaneh Sardarabadi¹, Kang-Yun Lee², Wei-lun Sun², and Cheng-Hsien Liu¹

¹National Tsing Hua University, TAIWAN and

² Taipei Medical University, TAIWAN

TO19.a DEVELOPMENT OF A THREE-DIMENSIONAL MICROFLUIDIC PLATFORM FOR CELL MIGRATION STUDIES

Tak Keung Pang, Yu Zhu, Eileen Yi Lam Li, Anna M. Blocki, Yi Ping Ho, and Wood Yee Chan, Chinese University of Hong Kong, HONG KONG

W019.a MICROWELL CHIPS REVISITED: APPLYING MICROWELLS TO STUDY CELL-CELL JUNCTION IN CALCIUM SIGNALING

Hanyu Yao and Hon Son Ooi Chinese University of Hong Kong, HONG KONG

Liposomes/Membranes

M021.a EVALUATION OF MEMBRANE PROTEINS SYNTHESIZED USING THE IN SITU IVTT SYSTEM FOR INSERTION INTO MONODISPERSE GUVS

Satoshi Nanjo¹, Mamiko Tsugane¹, Tomoaki Matsuura², and Hiroaki Suzuki¹

¹Chuo University, JAPAN and ²Tokyo Institute of Technology, JAPAN

M022.a GIGA-OHM SEALED BLOCK COPOLYMER-BASED 3D POLYMORPHIC ARTIFICIAL CELL MEMBRANE ARRAY FOR ELECTROPHYSIOLOGICAL RECORDING

Dong-Hyun Kang¹, Bong Kyu Kim^{1,2}, Hyunil Ryu¹, and Tae Song Kim¹

¹Korea Institute of Science and Technology, KOREA and

²Korea University, KOREA

M023.a STABILIZING ARTIFICIAL CELLS WITH HYDROGEL CYTOSKELETON

Conghui Ma

ShanghaiTech University, CHINA

TO20.a A CENTRIFUGAL DROPLET FORMATION UNIT FOR SINGLE-STEP GENERATION OF GIANT LIPOSOMES IN A CDICE DEVICE

Sho Takamori¹, Hisatoshi Mimura¹, Toshihisa Osaki¹, and Shoji Takeuchi¹.²

¹Kanagawa Institute of Industrial Science and Technology, JAPAN and ²University of Tokyo, JAPAN

TO21.a FORMING ASYMMETRIC LIPOSOMES WITH NATURALLY-DERIVED LIPIDS TO MIMIC RED BLOOD CELLS

Alex R. McDonald, Paige Allard, Kaitlyn E.E. Ramsay, and Katherine S. Elvira University of Victoria. CANADA

TO22.a ION FLUX RECORDING OF SINGLE PROTEINS IN 3D FREE-STANDING LIPID BILAYER ARRAY FORMED BY PRESSURE-ASSISTED ELECTROFORMATION IN PHYSIOLOGICAL SALT CONCENTRATION

Bong Kyu Kim $^{1.2}$, Dong-Hyun Kang 1 , Hyunil Ryu 1 , Seok Chung 2 , and Tae Song Kim 1

¹Korea Institute of Science and Technology, KOREA and

²Korea University, KOREA

W020.a ANALYZING THE ROLE OF PROTEIN ON TEAR FILM LIPID LAYER IN EVAPORATION RESISTANCE USING A 3D-PRINTED CHAMBER

Ahmed Fuwad, Deeborah Lee, Sun Min Kim, and Tae-Joon Jeon INHA University, KOREA

W021.a INVESTIGATION AND CHARACTERIZATION OF SINGLE NANOSIZED LIPOSOMES IN A NANOFLUIDIC DEVICE

Soji Miyata¹, Nattapong Chantipmanee¹, and Yan Xu^{1,2}

¹ Osaka Metropolitan University, JAPAN and ² Japan Science and Technology Agency (JST), JAPAN

W022.a MICROFLUIDIC FORMATION OF MULTICAVITY LIPID PARTICLE (MCLP) FROM DOUBLE EMULSION TEMPLATE

Mostafa Bakouei, Indraja S. Raju, Ali Kalantarifard, and Caglar Elbuken University of Oulu, FINLAND

Organisms on Chip (C. elegans, Zebrafish, Arabidopsis, etc.)

M024.a BIOENERGETIC HEALTH ASSESSMENT OF CORAL POLYPS VIA REAL-TIME MONITORING OF OXYGEN CONSUMPTION RATES IN A MICROFLUIDIC DEVICE

Hsin-ying Wu, Pei-Heng Tai, and Shih-Hao Huang National Taiwan Ocean University, TAIWAN

M025.a LOW-COST OPTOFLUIDIC DEVICE FOR RAPID AND CONTINUOUS LIGHT SHEET SCREENING OF NEURODEGENERATION IN LARVAL AND ADULT C. ELEGANS

Faraz Rahimpouresfahani, Nima Tabatabaei, and Pouya Rezai York University, CANADA

T023.a A MICROFLUIDC PLATFOM FOR IN SITU ANALYSIS OF BIOFILM FORMATION IN FLOW AND TURBULENCE MEASUREMENT

Keqing Wen^{1,2}, Anna A. Gorbushina^{1,2}, Karin Schwibbert¹, and Jérémy Bell¹

¹Bundesanstalt für Materialforschung und -prüfung (BAM), GERMANY and ²Freie Universität Berlin, GERMANY

TO24.a DEVELOPING MICROFLUIDIC PLATFORMS FOR RAPID IDENTIFICATION OF NEW TARGETS FOR NEURODEGENERATIVE DISORDERS

Paloma P. Torres, Richard Kaye, lan Johnston, Maria Dimitriadi, and Christabel Tan University of Hertfordshire, UK

T025.a SONOROTOR: AN ACOUSTIC ROTATIONAL ROBOTIC PLATFORM FOR ZEBRAFISH LARVAE

Zhiyuan Zhang and Daniel Ahmed ETH Zürich, SWITZERLAND

W023.a ACOUSTOFLUIDIC IMMOBILISATION OF C. ELEGANS FOR NEURODEGENERATIVE DISEASE RESEARCH

Nino F. Läubli and Gabriele S. Kaminski Schierle University of Cambridge, UK

W024.a ELECTRICAL-IMPEDANCE-SPECTROSCOPY-BASED DETECTION OF MORPHOLOGY AND VIABILITY OF IMMOBILIZED C. ELEGANS WORMS IN A MICROFLUIDIC DEVICE

Song Yu¹, Tiancong Lan¹, Jiaqi Liu¹, Shuangye Xu¹, Xinxin Lu¹, Yiyan Zhang², Di Chen³, Zixin Wang⁴, and Zhen Zhu¹

¹ Southeast University, CHINA, ² Nanjing University, CHINA, ³ Zhejiang University, CHINA, and ⁴ Sun Yat-sen University, CHINA

Organs on Chip

M026.a A COMPARTMENTALISED MICROFLUIDIC DEVICE ENABLES AIR-LIQUID INTERFACE CULTURE OF AIRWAY EPITHELIAL CELLS AND MEASUREMENT OF DYNAMIC IMMUNE CELL RECRUITMENT

Lucy-May Young, Louis J.Y. Ong, Kirsten Spann, and Yi-Chin Toh Queensland University of Technology, AUSTRALIA

M027.a A MULTIORGAN-ON-CHIP PLATFORM TO STUDY CANCER METASTASIS AND ASSOCIATED VASCULAR HOMEOSTATIC DYNAMICS

Nilesh Kumar, Prosenjit Sen, and Ramray Bhat Indian Institute of Science, INDIA

M028.a A THERMOPLASTIC ELASTOMER BASED MICROFLUIDIC DEVICE FOR BLOOD VESSEL NETWORK FORMATION AND APPLICATIONS

Byeong-Ui Moon¹, Kebin Li¹, Han Shao², Lauren Banh², Lidija Malic¹, Edmond Young², Sowmya Viswanathan^{2,3}, and Teodor Veres¹

¹National Research Council Canada, CANADA, ²University of Toronto, CANADA, and ³University Health Network, CANADA

M029.a BLADDER-ON-A-CHIP RECAPITULATING THE STRATIFIED UROTHELIUM BY CO-CULTURING WITH FIBROBLASTS

Taiki Nis<mark>himura¹, Yuji Takat</mark>a¹, Kazuhiro Ofuji², Kazuya Fujimoto¹, Minoru Ta<mark>kasato², and R</mark>yuji Yokokawa¹

¹ Kyoto University, JAPAN and ² Institute of Physical and Chemical Research (RIKEN), JAPAN

M030.a DESMOPLASIA IN STROMAL CELLS AND ANTI-CANCER DRUG RESISTANCE: ONE CHIP MICRO ENGINEERED TUMOR MODEL

Madhu Shree Poddar¹, Yu-De Chu², Chau-Ting Yeh², and Cheng-Hsien Liu¹

- ¹National Tsing Hua University, TAIWAN and
- ²Chang Gung Memorial Hospital, TAIWAN

M031.a DEVELOPMENT OF MICROPHYSIOLOGICAL MODEL FOR HYPOXIA-INDUCED PLACENTAL REMODELING

Ahmed Fuwad, Seorin Jeong, Tae-Joon Jeon, and Sun Min Kim INHA University, KOREA

M032.a EVALUATION OF THE THREE-DIMENSIONAL SHAPE OF THE CELL SPHEROIDS FORMED BY USING VIBRATION-INDUCED FLOW

Yui Katsumata and Takeshi Hayakawa Chuo University. JAPAN

M033.a INJECTION MOLDED LUNG-ON-CHIP MODEL INTEGRATING A PROTEIN-BASED CELL CULTURE MEMBRANE TO STUDY ALVEOLAR ECM REMODELING

Tobias A. Weber¹, Jan Schulte¹, Pauline Zamprogno¹, Johannes Fehr¹, and Olivier T. Guenat^{1,2}

¹University of Bern, SWITZERLAND and ²University Hospital of Bern, SWITZERLAND

M034.a MICROFLUIDIC PLATFORM FOR MODELLING OF ALVEOLAR-VASCULAR CELL INTERACTIONS IN PULMONARY HYPERTENSION (PH) ASSOCIATED WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD)

Maike Haensel, Vanessa Ho, Joshua Edel, Darryl Overby, Clare Lloyd, and Beata Wojciak-Stothard Imperial College London, UK

M035.a ON-CHIP MODEL OF TUMOR ANGIOGENESIS IN TRANSLOCATION RENAL CELL CARCINOMA INCORPORATING PERICYTES AND ENDOTHELIAL CELLS

Atsuya Kitada¹, Hang Zhou¹, Kazuya Fujimoto¹, Miwa Tanaka², Masaya Baba³, Takuro Nakamura⁴, and Ryuji Yokokawa¹

¹ Kyoto University, JAPAN, ² Japanese Foundation for Cancer Research, JAPAN, ³ Kumamoto University, JAPAN, and ⁴ Tokyo Medical University, JAPAN

M036.a QUANTIFYING THE REGENERATION OF RADIATION-DAMAGED VESSELS ON A 3D VASCULATURE CHIP USING DEEP LEARNING-BASED IMAGE ANALYSIS

Dong-Hee Choi^{1,2}, Jinchul Ahn^{1,2}, Yong Hun Jung^{1,2}, Euijeong Song², and Seok Chung^{1,3} ¹ Korea University, KOREA, ² Next&Bio Inc, KOREA, and ³ Korea Institute of Science and Technology (KIST), KOREA

M037.a TIME COURSE ANALYSIS AND NUMERICAL SIMULATION OF ON-CHIP-VASCULAR BED FORMATION TOWARD QUANTITATIVE UNDERSTANDING

Kazuya Fujimoto, Yoshikazu Kameda, and Ryuji Yokokawa Kvoto University. JAPAN

T026.a A GLOMERULUS-ON-A-CHIP PLATFORM FOR STUDYING HYPERTENSION-BORN PROTEINURIC RENAL DISEASE

Zong-Min Liu, Bo-Yi Yao, Yun-Jie Hao, and Fan-Gang Tseng National Tsing Hua University, TAIWAN

T027.a A MULTIWELL MICROFLUIDIC-MEA PLATFORM FOR NEUROMUSCULAR JUNCTION RECONSTRUCTION

Oramany Phouphetlinthong, Audrey Moisan, Audrey Sebban, Pauline Duc, Florence Rage, and Benoit Charlot Université de Montpellier, FRANCE

TO28.a ADVANCING CANCER COMPREHESION: UNVEILING PROMISING OPTIONS WITH MULTI-ORGAN-ON-CHIP (MULTI-OOC) APPORACH Pawak Romańczyk Agrieczka Zuchowska, Elizbiata, lastrzabska

Paweł Romańczuk, Agnieszka Żuchowska, Elżbieta Jastrzębska, Magdalena Matczuk, Joanna Zajda, and Zbigniew Brzózka Warsaw University of Technology, POLAND

T029.a CANTILEVER MICRO ELECTRODE ARRAY (MEA) FOR THE MEASUREMENT OF INNER EXTRACELLULAR ACTIVITY OF CEREBRAL ORGANOÏDS

Oramany Phouphetlinthong, Emma Partiot, Audrey Sebban, Raphaël Gaudin, and Benoît Charlot Université de Montpellier, FRANCE

T030.a DEVELOPING MICROFLUIDIC DEVICES FOR CELLULAR MODELLING OF INHERITED KIDNEY DISORDERS

George Parpas, Colin Johnson, and Christoph Walti University of Leeds, UK

T032.a FIBROBLASTS INDUCE DRUG RESISTANCE IN LUNG CANCER ORGANOIDS

Qiyue Luan, Ines Pulido, Jian Zhou, Takeshi Shimamura, and Ian Papautsky *University of Illinois, Chicago, USA*

T033.a LARGE-SCALE MANUFACTURING OF FOIL-BASED MICROFLUIDIC CHIPS FOR NEURON CELL CULTURE AND AXON OUTGROWTH MONITORING

Nihan Atak¹, Anja Haase¹, Ana Ayerdi-Izquierdo², Martin Smolka¹, Jan Hesse¹, Nerea briz Iceta², Lea Tomasova³, Clarissa Salado⁴, Stephan Ruttloff¹, Johannes Götz¹, Alvaro Conde⁵, Conor O'Sullivan⁶, and Nastasia Okulova⁶

¹ Joanneum Research Forschungsgesellschaft mbH, AUSTRIA, ² TECNALIA, Basque Research and Technology Alliance (BRTA), SPAIN, ³ Ibidi GmbH, GERMANY, ⁴ Innoprot, SPAIN, ⁵ Micronit BV, NETHERLANDS, and ⁶ Inmold, DENMARK

T034.a MONOLITHIC CO-CULTURE SYSTEM FOR THE GUT-LIVER INTERACTION STUDY INTEGRATING PARACELLULAR BARRIER FUNCTION ASSAY

Ryuya Kida¹, Alan Rajendran², Mamiko Tsugane¹, Jean-Charles Duclos-Vallee², Maxime M. Mahe³, Sakina Bensalem², Hiroaki Suzuki¹, and Bruno L. Pioufle²

¹Chuo University, JAPAN, ²Universite Paris Saclay, FRANCE, and ³Nantes Universite, FRANCE

T035.a OPTIMIZATION OF CULTURE CONDITIONS FOR PROMOTING ANGIOGENESIS AROUND AND WITHIN A LIVER SPHEROID IN A MICROFLUIDIC DEVICE

Satomi Matsumoto¹, Wenlong Wang¹, Ayumi Haginiwa¹, Anna K. Kopec², Julie Harney², Lindsay Tomlinson², Nasir Khan², Kazuya Fujimoto¹, and Ryuji Yokokawa¹ ¹ Kyoto University, JAPAN and ² Pfizer, Inc., USA

T036.a SPIDER SILK MEMBRANE-BASED TISSUE MODELS IN OPEN-TOP MICROFLUIDIC CHIPS ALLOW INTERMEDIATE SHEAR LEVELS

Linneea Gustafsson^{1,3}, Nayere Tabina², Volker Lauschke², My Hedhammar³, and Wouter van der Wijngaart³ ¹ Spiber Technologies AB, SWEDEN, ² Karolinska Institutet, SWEDEN, and ³ KTH Royal Institute of Technology, SWEDEN

T037.a UNIBODY 3D PRINTING OF MICROFLUIDIC DEVICES FOR CELL CULTURE APPLICATIONS

Louis Jun Ye Ong, Lucy M-G. Young, and Yi-Chin Toh Queensland University of Technology, AUSTRALIA

W025.a A 3D PRINTED PATIENT-SPECIFIC CAROTID VESSEL WITH PHYSIOLOGICAL HEMODYNAMICS AND TISSUE ARCHITECTURE

Jorge A. Catano¹, Louis J. Y. Ong¹, Prasad KDV. Yarlagadda^{1,2}, Zhiyong Li¹, and Yi-Chin Toh¹

¹ Queensland University of Technology, AUSTRALIA and ² University of Southern Queensland, AUSTRALIA

W026.a A MICROFLUIDIC ONE-SINGLE-TOUCH PLATFORM FOR HIGH-THROUGHPUT GENERATION OF VASCULARIZED TUMOR MODELS

Shou-Yu Ma^{1,2}, Didem Rodoplu Solovchuk¹, Gou-Jen Wang², and Chia-Hsien Hsu^{1,2}

¹National Health Research Institutes, TAIWAN and ²National Chung Hsing University, TAIWAN

W028.a ASSESSING COMBINATION IMMUNOTHERAPY THROUGH A TUMOUR-MICROENVIRONMENT-ON-CHIP PLATFORM

Hsuan-Yu Mu, Chiao-Min Lin, Li-An Chu, Ji Li, Chao-Yu Liu, Hsi-Chien Huang, Sheng-Liang Cheng, Tsung-Ying Lee, Hsin Mei Lee, Hsin-Min Chen, Yun-Jen Tsai, Yunching Chen, and Jen-Huang Huang Tsing Hua University, TAIWAN

W029.a DESIGN AUTOMATION FOR ORGANS-ON-CHIP

Maria Emmerich¹, Philipp Ebner², and Robert Wille^{1,3}

¹ Technical University of Munich, GERMANY,

² Johannes Kepler University Linz, AUSTRIA, and

³ Software Competence Center Hagenberg GmbH, AUSTRIA

W030.a DEVELOPMENT OF A MICROFLUIDIC MODEL OF CEREBRAL MICROBLEEDS AT THE BLOOD-BRAIN INTERFACE

Sae R. Choi¹, Natalia Ospina-Munuz¹, Nishanth Surianarayanan¹, Sehong Kang², Michelle Luo³, Yun Chang¹, Xiaoping Bao¹, Alisa S. Wolberg³, Martha U. Gellette², Hyunjoon Kong², and Bumsoo Han¹

¹Purdue University, USA, ²University of Illinois, Urbana-Champaign, USA, and ³University of North Carolina, USA

W031.a EVALUATION AND COMPARISON OF ANGIOGENIC SPROUTS ACCORDING TO THE ORIGINS OF ENDOTHELIAL CELLS IN AN ON-CHIP ALVEOLAR SOFT PART SARCOMA (ASPS) ANGIOGENESIS MODEL

Ayumi Haginiwa¹, Surachada Chuaychob¹, Satomi Matsumoto¹, Miwa Tanaka², Kazuya Fujimoto¹, Takuro Nakamura³, and Ryuji Yokokawa¹

¹Kyoto University, JAPAN, ²Japanese Foundation for Cancer Research, JAPAN, and ³Tokyo Medical University, JAPAN

W032.a GROWING SPHEROIDS IN A CONTINUOUSLY PERFUSABLE HYBRID MICROFLUIDIC CHIP

Hiba Aljayyousi¹, Amani Ghassan¹, Sarah Sahloul¹, Navajit Baban¹, Ajymurat Orozaliev¹, Piergiorgio Percipalle¹, and Yong-Ak Song^{1,2} ¹New York University, Abu Dhabi, UAE and ²New York University, USA

W033.a MEDIUM FLOW CONTROLLED-CYCLIC BREATHING LUNG INFLAMMATION CHIP FOR PULMONARY DRUG SCREENING

Chao-Yu Liu, Ying-Ru Chen, Hsuan-Yu Mu, and Jen-Huang Huang National Tsing Hua University, TAIWAN

W034.a NOVEL THIOL-ENE-BASED MICROFLUIDIC DEVICE INTEGRATED WITH INKJET-PRINTED MULTI-SENSING CAPABILITIES FOR ORGAN-ON-A-CHIP APPLICATIONS

Denise Marrero^{1,2}, Ferran Pujol-Vila¹, Gemma Gabriel^{1,2}, Rosa Villa^{1,2}, Mar Alvarez^{1,2}, and Xavi Illa^{1,2}

¹Consejo Superior de Investigaciones Científicas (CSIC), SPAIN and

²Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), SPAIN

W035.a PERIODONTIUM-ON-CHIP: A NOVEL VASCULARIZED HUMAN DENTAL MODEL TO STUDY PERIODONTITIS

Sara Svanberg¹, Elisabeth Hirth¹, Thimios A. Mitsiadis², and Petra S. Dittrich¹

¹ETH Zürich, SWITZERLAND and ²University of Zurich, SWITZERLAND

W036.a THE ONSET OF CELLULAR DYSFUNCTION IN A 3D GLYCATED EXTRACELLULAR MATRIX

Insung Yong¹, Eun Sun Ji², Hyejin Kim¹, Yoonmi Hong¹, Jin Young Kim², and Pilnam Kim¹

¹ Korea Advanced Institute of Science and Technology (KAIST), KOREA and ² Korea Basic Science Institute (KBSI), KOREA

Single-Cell Analysis

MO38.a A MICROFLUIDIC PLATFORM TO STUDY BACTERIAL MOTILITY UNDER CONFINEMENT

Md Ramiz Raza, Jijo E. George, Savita Kumari, Mithun K. Mitra, and Debjani Paul

Indian Institute of Technology, Bombay, INDIA

M039.a CONSTRUCTION OF A CELL SIZE AND HARDNESS MEASUREMENT METHOD USING A MICROFLUIDIC DEVICE WITH A MULTI-LAYERED STRUCTURE

Mitsuhiro Horade¹, Masatsugu Moriga¹, Shuichi Murakami², and Tsunemasa Saiki³

¹ National Defense Academy of Japan, JAPAN, ² Osaka Research Institute of Industrial Science and Technology, JAPAN, and ³ Hyogo Prefectural Institute of Technology, JAPAN

M040.a DEVELOPMENT OF A MICROFLUIDIC DEVICE FOR MEASUREMENT OF DEFORMABILITY AND PLURIPOTENCY FROM THE SAME CELL

Takuma Nomiyama, Sachiko Ide, and Noritada Kaji Kyushu University, JAPAN

MO41.a HIGH-THROUGHPUT REAL-TIME CHARACTERISATION OF THE INTRINSIC MEMBRANE MECHANICAL PROPERTIES OF LIVING CELLS

Ziyu Guo and Yi Sui Queen Mary University of London, UK

M042.a IN-SITU LABEL-FREE QUANTITATIVE PHASE IMAGING FLOW CYTOMETRY FOR BACTERIA EXTRACELLULAR POLYMERIC SUBSTANCES CHARACTERIZATION IN SEWAGE TREATMENT

Fei Liang, Shunan Zhao, Junwen Zhu, Yifan Sun, Ruiping Liu, and Wenhui Wang

Tsinghua University, CHINA

M043.a MASSIVELY PARALLEL HIGH THROUGHPUT SINGLE-CELL PRINTING AND HIGHLY EFFICIENT LARGE BIOMOLECULAR DELIVERY INTO CELLS

Ashwini S. Shinde¹, Pallavi S. Shinde¹, Kavitha Illath¹, Moeto Nagai², Srabani Kar³, and Tuhin S. Santra¹

¹Indian Institute of Technology, Madras, INDIA, ²Toyohashi University of Technology, JAPAN, and ³Indian Institute of Science Education and Research, INDIA

MO44.a ON THE COMPATIBILITY OF NANOVIALS WITH MICROFLUIDIC IMPEDANCE CYTOMETRY

Federico Petitta¹, Cristian Brandi¹, Adele De Ninno², Paolo Bisegna¹, and Federica Caselli¹

¹University of Rome Tor Vergata, ITALY and

²Italian National Research Council, ITALY

MO45.a PERFORMANCE-ENHANCED CLOGGING-FREE VISCOUS SHEATH CONSTRICTION IMPEDANCE FLOW CYTOMETRY

Junwen Zhu, Yongxiang Feng, Huichao Chai, Fei Liang, Zhen Cheng, and Wenhui Wang

Tsinghua University, CHINA

M046.a STUDYING SINGLE PROTOPLASTS - A FLUIDOT CASE STUDY ON SINGLE PLANT CELLS

Karen Ven¹, David De Vleesschauwer², Jolien Breukers¹, Robin De Groote¹, Aurélie Mohrbacher¹, Ilse Van Den Brande², Sarah De Cokere², Francesco Dal Dosso¹, Peter Denolf², and Jeroen Lammertyn¹

1KU Leuven, BELGIUM and 2BASF Seeds & Traits, BELGIUM

M047.a UNCOVERING STRAIN-DEPENDENT MECHANICAL BIOMARKERS WITH SEQUENTIAL-SQUEEZE NODE-PORE SENSING

Rachel Rex, Sharicka Zutshi, and Lydia Sohn *University of California, Berkeley, USA*

TO38.a APOPTOSIS MONITORING OF CHINESE HAMSTER OVARY CELLS USING MICROFLUIDIC ISODIELECTROPHORESIS

John-Alexander Preuss¹, Roberto Rodriguez-Moncayo², Joel Voldman², and Janina Bahnemann¹

¹University of Augsburg, GERMANY and ²Massachusetts Institute of Technology, USA

T039.a DEFORMABILITY CYTOMETRY REVEALS INCREASED CELL STIFFNESS IN PATIENTS WITH MAJOR DEPRESSIVE DISORDER

Lisa Kwapich¹, Alexander Karabatsiakis², Tobias Neckernuss³, Daniel Geiger³, Jonas Pfeil^{1,3}, Eun-Jin Sim⁴, Markus Kiefer⁴, Alexander Behnke¹, Iris T. Kolassa¹, and Othmar Marti¹ * *Ulm University, GERMANY, *2University of Innsbruck, AUSTRIA, *3 *Sensific GmbH, GERMANY, and *Ulm University Medical Center, GERMANY

TO40.a ELECTROROTATION OF SINGLE CELLS FOR THE ANALYSIS OF MEMBRANE DAMAGE INDUCED BY THE NEUROTOXIC PROTEIN ALPHA-SYNUCLEIN

Till Ryser, Hilal Lashuel, and Carlotta Guiducci École Polytechnique Fédérale de Lausanne, SWITZERLAND

T041.a HIGHLY SELECTIVE IMAGE-BASED ELECTROPORATION OF SINGLE CELLS

Felix Pfisterer, Neus Godino, Tobias Gerling, Simone De Carli, and Michael Kirschbaum

Fraunhofer IZI-BB. GERMANY

TO42.a LABEL -FREE ANALYSIS OF GROWTH AND LYSIS OF MICROBIAL COMMUNITIES AT THE SINGLE-CELL LEVEL USING OBJECT DETECTION ORIENTED DEEP LEARNING AND DROPLET MICROFLUIDICS

Anuj Tiwari, Vasileios Anagnostidis, Robyn Manly, Nela Nikolic, Ben Temperton, and Fabrice Gielen University of Exeter, UK

TO43.a MICROFLUIDIC MEASUREMENT OF YOUNG'S MODULI OF STORED AND MALARIA-INFECTED SINGLE RED BLOOD CELLS

Savita Kumari¹, Priyanka Naik¹, Chhaminder Kaur¹, Vijay Mistari¹, Tanusri Roy¹, Swati Patankar¹, Shamik Sen¹, Dhrubaditya Mitra^{2,3}, and Debjani Paul¹

¹Indian Institute of Technology, Bombay, INDIA, ²KTH Royal Institute of Technology, SWEDEN, and ³Stockholm University, SWEDEN

TO44.a ONE-SHOT SINGLE-CELL PROTEOME AND METABOLOME ANALYSIS TECHNIQUE FOR THE SAME SINGLE CELL ANALYSIS

Jie Wu

Zhejiang University, CHINA

TO45.a RAPID AND ROBUST CONSTRUCTION OF SINGLE CELL CAPTURE ARRAY ON DIGITAL MICROFLUIDICS FOR DRUG SCREENING ASSAY Wanging Wu, Wenting Qiu, and Mengsu Yang

City University of Hong Kong, HONG KONG

TO46.a TRANSCRIPTOME, PROTEOME AND METABOLOME PROFILING OF SINGLE MOUSE OOCYTES WITH DROPLET-BASED MICROFLUIDICS AND MASS SPECTROMETRY TECHNIQUES

Yi-Rong Jiang¹, Jie Wu¹, Lan-Rui Cao², Hao Wu², Xu-Dong Fu², and Qun Fang^{1,3}

¹Zhejiang University, CHINA, ²Zhejiang University Medical Center, CHINA, and ³ZJU-Hangzhou Global Scientific and Technological Innovation Center, CHINA

W037.a A "SMART" HYDROGEL-BASED MICROFLUIDIC PLATFORM FOR SELECTIVE CELL RETRIEVAL

Julie Van Lent, Karen Ven, Amelie Remmerie, Vince Engelborghs, Christian Clasen, Karen Vanhoorelbeke, and Jeroen Lammertyn KU Leuven, BELGIUM

W038.a APPLICATION OF QUANTITATIVE ANALYSIS OF SINGLE-CELL PROTEINS IN LEUKEMIA GATING, TUMOR CLASSIFICATION AND HIERARCHY OF CANCER STEM CELLS

Ting Zhang¹, Lixing Liu¹, Yuanchen Wei¹, Chiyuan Gao¹, Liangliang Ma², Mengge Gao³, Xiaosu Zhao³, Yixiang Wang⁴, Deyong Chen¹, Lichao Sun², Junbo Wang¹, and Jian Chen¹

¹Chinese Academy of Sciences, CHINA, ²Cancer Hospital Chinese Academy of Medical Sciences, CHINA, ³National Clinical Research Center for Hematologic Disease, CHINA, and ⁴Peking University Hospital of Stomatology, CHINA

W039.a DETECTION OF SINGLE-CELL CYTOKINE SECRETION USING CELL-BASED REPORTER CELLS IN A HONEYCOMB MICROFLUIDIC DEVICE

Jonathan C. Briones¹, Wilfred V. Espulgar², JeongHoon Park¹, Eri Itotagawa¹, Shohei Koyama¹, Eiichi Tamiya¹, Hyota Takamatsu¹, and Masato Saito¹ 1 Osaka University, JAPAN and 2 De La Salle University, PHILIPPINES

W040.a FETAL NUCLEATED RED BLOOD CELLS (FNRBCS) ISOLATION BASE ON SACA CHIP AND AUTOMATIC FLUORESCENCE IMAGE SYSTEM

> Hsinyu Yang^{1,2}, Chunhao Lai¹, and Fangang Tseng^{1,2} ¹*National Tsing Hua University, TAIWAN and* ²*Academia Sinica, TAIWAN*

W041.a IMPEDANCE FLOW CYTOMETRY CONFIGURED FOR SINGLE-CELL ELECTRICAL-MECHANICAL INTRINSIC CHARACTERIZATION

W042.a MAGNETIC ARTIFICIAL CILIA ACTUATION IN CELL CULTURE MEDIUM FOR STUDYING DYNAMIC MECHANOTRANSDUCTION

Roel Kooi, Tanveer Ul Islam, Oscar M.J.A. Stassen, Jan de Boer, and Jaap M.J. den Toonder Eindhoven University of Technology. NETHERLANDS

W043.a NEUROMORPHIC-ENABLED IMAGING FLOW CYTOMETRY WITH MULTI-ANGLE SPATIAL-TEMPORAL ENHANCEMENT

Weihua He, Yongxiang Feng, Junwen Zhu, Fei Liang, and Wenhui Wang Tsinghua University, CHINA

W044.a PARALLEL MONITORING OF SINGLE-CELL CULTURE IN OIL-SEALED HYDROGEL MICROWELLL ARRAY FOR SINGLE-CELL ANALYSIS ON EXOSOMES

Chisaki Yamagata¹, Shun Itai¹, Yuta Kurashina², Makoto Asai¹, Ayuko Hoshino³, and Hiroaki Onoe¹

¹Keio University, JAPAN, ²Tokyo University of Agriculture and Technology, JAPAN, and ³University of Tokyo, JAPAN

W045.a RISK IN LONG-TERM OPTICAL MONITORING OF CELL CULTURE: INVESTIGATION OF VISIBLE LIGHT INDUCED DEFECT ON YEAST CELL CYCLE

Yingying Wang¹, Yulu Geng¹, Jiaming Fu², Qing-an Huang¹, Zhenxiang Yi¹, and Zhen Zhu¹ ¹Southeast University, CHINA and ²Nanjing Forestry University, CHINA

W046.a ULTRA-SENSITIVE FLUORESCENCE-ACTIVATED DROPLET SORTING ENABLED BY TETRAMER HYBRIDIZATION CHAIN REACTION

Long Chen^{1,2}, Yifan Liu¹, and Xiangqiang Mi²

¹ ShanghaiTech University, CHINA and ² Chinese Academy of Sciences. CHINA

Synthetic Biology

M048.a SILICA NANOPARTICLE-ASSEMBLED MICROWELL ARRAY CHIP FOR HIGH-CAPACITY OLIGONUCLEOTIDE SYNTHESIS

Duo Fu, Xiao Su, Dachao Li, and Xiaoping Li Tianjin University, CHINA

TO47.a DROPLET-DIGITAL MULTIPLEXED SORTER MICROFLUIDICS FOR STRAIN DEVELOPMENT

Chiara Leal Alves¹, Sebastien Dumont², Fatemeh Ahmadi¹, Ziuwin Leung¹, Zhiyang Deng¹, Michelle Oeser², and Steve C. C. Shih¹

1 Concordia University, CANADA and 2 Lallemand, CANADA

W047.a INTERFACING ELECTROCHEMICAL MEASUREMENTS WITH MICROFLUIDICS FOR METABOLIC ENGINEERING

Nicholas F.O. Crudele, Laszlo Kekedy-Nagy, Chiara Leal Alves, James M. Perry, and Steve C.C. Shih Concordia University, CANADA

Other Applications in Biology

M049.a DETECTION OF A SINGLE AMYLOID NUCLEATION EVENT IN MICROMETER-SIZED PROTEIN DROPLETS FORMED BY LIQUID-LIQUID PHASE SEPARATION

Mao Fukuyama¹, Taiki Ozawa¹, Suguru Nishinami², Yoko Maruyama¹, Shunsuke Tomita³, Yumiko Ohhashi⁴, Motohiro Kasuya⁵, Masao Gen¹, Eri Chatani⁶, Kentaro Shiraki², and Akihide Hibara⁴

¹ Tohoku University, JAPAN, ²University of Tsukuba, JAPAN, ³National Institute of Advanced Industrial Science and Technology (AIST), JAPAN, ⁴Tokyo Institute of Technology, JAPAN, ⁵Komatsu University, JAPAN, and

M050.a LARGE-SCALE MICROFLUIDIC ELECTROPORATION FOR THE TRANSFORMATION OF PREVIOUSLY GENETICALLY INTRACTABLE BACTERIA

⁶Kobe University, JAPAN

Po-Hsun Huang¹, Yiyin E. Chen¹, Cheng Li¹, Mary Anderson¹, Kerwyn C. Huang², and Cullen R. Buie¹ ¹Massachusetts Institute of Technology, USA and ²Stanford University, USA

M051.a QUANTITATIVE PHASE DEFORMABILITY CYTOMETRY FOR NONINVASIVE HIGH-THROUGHPUT CHARACTERIZATION OF CELLS

Qinru Xiao¹, Yanping He¹, Md Habibur Rahman¹, Guangyao Cheng¹, Renjie Zhou¹, and Yi-Ping Ho^{1,2}

¹Chinese University of Hong Kong, HONG KONG and

²City University of Hong Kong, HONG KONG

TO48.a AU NANOROD MIXED PDMS MICROTIP DEVICE FOR HIGHLY EFFICIENT INTRACELLULAR DELIVERY ACTIVATED BY INFRARED LIGHT PULSES

Hima Manoj¹, Kavitha Illath¹, Uvanesh Kasiviswanathan³, Srabani Kar², and Tuhin S. Santra¹

¹Indian Institute of Technology, Madras, INDIA, ²Indian Institute of Science Education and Research Tirupati, INDIA, and ³Motilal Nehru National Institute of Technology, Allahabad, INDIA

T049.a DEVELOPMENT NOVEL MICROFLUIDIC DEVICES FOR PASSIVE SEMEN SEPARATION

llona Grabowska-Jadach, Kamil Żukowski, Sandra Skorupska, Natalia Glapa, Waldemar Kuczyński, Michał Chudy, and Artur Dybko *Warsaw University of Technology, POLAND*

T050.a MICROBIAL ECOSYSTEM ANALYSIS OF BIOCHAR-ENRICHED SOIL IN KENYA USING MICROFLUIDIC SOIL MODELS

Erik Karlsson, Edith C. Hammer, Pelle Ohlsson, and Hanbang Zou Lund University, SWEDEN

T051.a REAL-TIME MONITORING OF THE ACTIVATION OF CELLULAR STRESS RESPONSE IN A RECOMBINANT ECOLI REPORTER STRAIN ON A DIELECTROPHORESIS CHIP

Lourdes Albina Nirupa Julius, Dora Akgül, Fabian Falk, Vlad Badilita, and Jan G. Korvink

Karlsruhe Institute of Technology, GERMANY

W048.a COMBINED EFFECT OF CONFINEMENT AND SHEAR ALTERS TRYPSIN-MEDIATED DEADHESION OF CELLS IN A MICROFLUIDIC GRADIENT GENERATOR

Senjuti Chakraborty, Shamik Sen, and Debjani Paul Indian Institute of Technology, Bombay, INDIA

W049.a INTEGRATION OF FIBER OPTICAL SENSORS INTO MICROSYSTEMS FOR THE DETECTION OF SPECIFIC BIOFILM PATTERNS

Nicolas Debener^{1,2}, Nils Heine^{1,3}, Katharina Frings^{1,2},
Maria L. Torres-Mapa^{1,2}, Alexander Heisterkamp^{1,2},
Meike Stiesch^{1,3}, Katharina Doll-Nikutta^{1,3},
Thomas Scheper^{1,2}, and Janina Bahnemann^{1,4}

1 Leibniz University, GERMANY, 2 Leibniz University Hannover, GERMANY,
3 Hannover Medical School, GERMANY, and 4 University of Augsburg,
GERMANY

W050.a MODULATION OF IMMUNE RESPONSE USING MAGNETICALLY-ACTUATED DYNAMIC SURFACES - ADVANCING BIOMATERIALS FOR THE NEXT-GENERATION SMART IMPLANTS

Lanhui Li and Burcu Gumuscu

Eindhoven University of Technology, NETHERLANDS

W051.a STUDY OF PLASMA MEMBRANE AND NUCLEAR ENVELOPE WOUND REPAIR DYNAMICS USING A NANOSTRUCTURED MICROFLUIDICS PLATFORM

Apresio K. Fajrial and Xiaoyun Ding University of Colorado, Boulder, USA

b - Diagnostics, Drug Testing & Personalized Medicine

Cancer Research, Capture & Analysis of Circulating Tumor Cells

M052.b 3D-OXYGEN GRADIENT CHIP FOR CANCER CELL MIGRATION RESEARCH

Pan Zuo, Jelle Sleeboom, and Jaap den Toonder Eindhoven University of Technology, NETHERLANDS

M053.b ENHANCING INFILTRATION OF CAR-T CELLS INTO SOLID TUMOR MICROENVIRONMENT THROUGH 3D ADAPTATION

Seung Won Oh¹, Junho Lee¹, Sangjoon Lah¹, Jae-Ho Cheong², Chan Hyuk Kim¹, and Pilnam Kim¹ ¹Korea Advanced Institute of Science and Technology (KAIST), KOREA and ²Yonsei University, KOREA

M054.b RAPID ISOLATION OF CIRCULATING TUMOR CELLS AND FULL COLLECTION OF THEIR EXOSOMES USING A THREE-DIMENSIONAL MICROBEAD ARRAY DESIGN

Sungchi Tsai¹, Wen-Yi Chang¹, Yun-Chi Tsai¹, Pyea-Yoo Kim¹, and Howard Doong^{1,2}

¹LifeCode Biotech, TAIWAN and ²Fu-Jen Catholic University, TAIWAN

T052.b A 3D MANUFTACTURING OF PEUMATIC MICROPUMP TO CAPTURE CIRCULATING TUMOR CELLS AND AUTOMATED STAINGING WITH FLUORESCENT DYE

Sungchi Tsai¹ and Howard Doong^{1,2}

¹LifeCode Biotech, TAIWAN and ²Fu-Jen Catholic University, TAIWAN

T053.b ENRICHMENT OF CHEMO-RESISTANT LIVE FLOATING PANCREATIC CANCER CELLS FROM MEDIA OF TUMOR MODEL BASED ON CELL MEMBRANE BIOPHYSICAL METRICS

Aditya Rane¹, Javad Jarmoshti¹, Abdullah-Bin Siddique¹, Sara Adair¹, Karina Torres-Castro², Todd W. Bauer¹, Carlos Honrado³, and Nathan S. Swami¹

¹University of Virginia, USA, ²National Institute of Standards & Technology (NIST), USA, and ³Iberian International Nanotechnology Institute, PORTUGAL

T054.b THE BIOMECHANICS OF DIFFERENT BREAST CANCER CELL SUBTYPES DIFFERS IN RESPONSE TO FAST INDUCED DEFORMATION AND RECOVERY

Emile Gasser^{1,2}, Kyohei Terao³, Emilie Su², Nassiba Abbade^{1,2}, Kotryna Vaidziulyte¹, Jean-Baptiste Manneville², Matthieu Piel¹, Jean-Louis Viovy¹, Jean-Yves Pierga¹, and Catherine Villard²

¹Institut Curie, FRANCE, ²Université Paris Cité, FRANCE, and
³Kagawa University, JAPAN

W052.b CANCER RESEARCH, CAPTURE & ANALYSIS OF CIRCULATING TUMOR CELLS

Lu-Wei Chang¹, Xin-Zhi Lee¹, Huan-Wei Liao¹, Hsin-Yu Yang¹.², and Fan-Gang Tseng¹.²

¹National Tsing Hua University, TAIWAN and ²Academia Sinica, TAIWAN

W053.b MICROGAP CHANNEL SYSTEM FORMED ON NANOIMPRINTED MICROCONE ARRAY FOR IMMUNOAFFINITY-BASED SELECTION OF RARE CELLS

Yuhei Saito¹, Natsumi Shimmyo¹, Rie Utoh¹, Shuhei Aoyama², Minoru Seki¹, and Masumi Yamada¹ ¹ Chiba University, JAPAN and ² Denka Co. Ltd., JAPAN

Civilization Diseases (diabetes, allergies)

M055.b MICROFLUIDIC IMMUNOSENSING PLATFORM BASED ON ROLLING CIRCLE AMPLIFICATION-ASSISTED DNA DENDRIMER PROBE FOR PORTABLE AND SENSITIVE DETECTION OF ALLERGEN-SPECIFIC IGE

Yiyu Chen¹, Huiting Lian¹, Bin Liu¹, Guangming Liu², and Xiaofeng Wei¹

1 Huagiao University, CHINA and ² Jimei University, CHINA

T055.b NEW TWO FLOW CHEMILUMINESCENCE-BASED RAPID DIAGNOSTIC TEST (RDT) PLATFORM FOR RAPID DIAGNOSTICS OF CARDIAC BIOMARKERS

Heeyeong Jang, Supreeth Setty, and Chong Ahn University of Cincinnati, USA

W054.b GELMA HYDROGEL IMMUNOWALL DEVICE FOR IL-6 QUANTITATION IN HUMAN SERUM

Yuto Banno, Ta<mark>kuma No</mark>miyama, Shoma Okuno, and Noritada Kaji Kyushu University, JAPAN

Clinical Chemistry

W055.b TARGET-RESPONSIVE CATALYZED HAIRPIN ASSEMBLY-INTEGRATED PHOTOTHERMAL APTASENSOR FOR SENSITIVE AND VISUAL QUANTIFICATION OF CARCINOEMBRYONIC ANTIGEN USING A DISTANCE-BASED MICROFLUIDIC CHIP

Xiaofeng Wei, Zhiming Wang, Huiting Lian, and Bin Liu Huaqiao University, CHINA

Drug Delivery

M056.b A MICROFLUIDICS-BASED METHOD FOR BRAIN TUMOR-TARGETING NANOMEDICINE PREPARATION

Ji Wang and Shuhuai Yao Hong Kong University of Science and Technology, HONG KONG

M057.b DELIVERY OF LARGE CARGO IN MAMMALIAN CELLS ENHANCED BY INFRARED LIGHT PULSE-ACTIVATED MICRO-RING DEVICE

Ashwini S. Shinde¹, Pallavi S. Shinde¹, Kavitha Illath¹, Moeto Nagai², Srabani Kar³, and Tuhin S. Santra¹

¹Indian Institute of Technology, Madras, INDIA, ²Toyohashi University of Technology, JAPAN, and ³Indian Institute of Science Education and Research, INDIA

M058.b NANOSTRUCTURED MICROFLUIDICS FOR HIGH-THROUGHPUT NUCLEAR DELIVERY OF PLASMID DNA AND RAPID PROTEIN EXPRESSION

Apresio K. Fajrial, Leyla Akh, and Xiaoyun Ding University of Colorado, Boulder, USA

T056.b ALGINATE HYDROGEL BEADS WITH TUNABLE CROSS-LINKING RATIO ENABLE PRECISELY CONTROLLED RELEASE OF ADENO-ASSOCIATED VIRUS FOR GENE THERAPY

Aiki Hioki¹, Shuhei Takatsuka¹, Yuta Kurashina², and Hiroaki Onoe¹

**Reio University, JAPAN and **Tokyo University of Agriculture and Technology, JAPAN

T057.b DEVELOPMENT OF ARTIFICIAL EXOSOMES USING A MICROFLUIDIC DEVICE FOR RNA DELIVERY

Masatoshi Maeki^{1,2}, Ayuka Niwa¹, Shota Oyama¹, Akihiko Ishida¹, and Manabu Tokeshi¹

¹Hokkaido University, JAPAN and ²KEK, JAPAN

W056.b BIORESIST-BASED SINGLE-CELL ARRAY CHIP FOR STANDARDIZED OPTOPORATION

Aniket Mishra¹, Shunya Okamoto¹, Takayuki Shibata¹, Tuhin S. Santra², and Moeto Nagai¹

¹Toyohashi University of Technology, JAPAN and ²Indian Institute of Technology, Madras, INDIA

W057.b INVESTIGATING NOVEL DRUG DELIVERY MECHANISMS WITH A MICROFLUIDIC CULTURE MODEL OF THE BIOPHYSICAL BARRERS TO DRUG DELIVERY IN PANCREATIC DUCTAL ADENOCARCINOMA

Delanyo Kpeglo¹, Margaret A. Knowles¹, Malcolm Haddrick², Stephen D. Evans¹, and Sally A. Peyman¹

¹University of Leeds, UK and ²Medicines Discovery Catapult, UK

Drug Screening & Development

M059.b ESTABLISHMENT OF MICROFLUIDIC STAPHYLOCOCCUS AUREUS BIOFILM ON THIOL-ENE POLYMERS FOR ANTIMICROBIAL EFFICACY SCREENING

Jéssica Amorim, Cristina D. Cruz, Markus Haapala, Päivi Tammela, and Tiina M. Sikanen

University of Helsinki, FINLAND

M060.b LOW ASPECT RATIO LAMINATION MIXER (LARLM) ENABLED BY TWO-PHOTON POLYMERIZATION FOR LIPID NANOPARTICLE SYNTHESIS WITH IN-SITU SIZE DETERMINATION

Ebrahim Taiedinejad

Technische Universität Braunschweig, GERMANY

M061.b SIMPLE DROPLET MICROFLUIDICS PLATFORM FOR DRUG SCREENING ON CANCER SPHEROIDS

Caroline Parent¹, Kiran Raj Melayil¹, Ya Zhou¹, Vivian Aubert¹, Didier Surdez², Olivier Delattre¹, Claire Wilhelm¹, and Jean-Louis Viovv¹

¹Institut Curie, FRANCE and ²Univerity of Zurich, SWEDEN

T058.b DIGITAL TWIN OF MINIATURIZED SYSTEM FOR HOLLOW-FIBER INFECTION MODEL TO ACCELERATE ANTIMICROBIAL RESISTANCE EVALUATION

Kazuhiro Noda¹, Toshihiro Kasama¹, Marie Shinohara¹, Masakaze Hamada², Kotaro Aoki², Yukiko T. Matsunaga¹, Madoka Takai¹, Yoshikazu Ishii², and Ryo Miyake¹ ¹University of Tokyo, JAPAN and ²Toho University, JAPAN

T059.b HIGH-THROUGHPUT DROPLET PLATFORM TO PRODUCE BARCODED APC LIBRARY FOR T CELL ANTIGEN SCREENING

Xu Cui

University of Singapore, SINGAPORE

T060.b MICROCHAMBER DEIVICE FOR SIMULTANEOUS ASSESSMENTS OF LOCAL BARRIER FUNCTION AND MORPHOLOGY OF EPITHELIAL CELL SHEET

Ryuya Kida, Mamiko Tsugane, and Hiroaki Suzuki Chuo University, JAPAN

W058.b EFFICIENT FULL-LENGTH IGG SECRETION AND SORTING FROM SINGLE YEAST CLONES IN DROPLET PICOREACTORS

Esteban Lebrun^{1,2}, Vasily A. Shenshin¹, Cécile Plaire¹, Vincent Vigneres³, Théo Pizette¹, Bruno Dumas¹, Jean-Marc Nicaud², and Guillaume Mottet¹ 1 Sanofi, FRANCE, ²INRAE, FRANCE, and ³Arcale, FRANCE

W059.b LABEL-FREE LONG-TERM VISUALIZATION OF ADHERENT CELL MULTIPOLAR DIVISION UNDER THIAMET-G TREATMENT

Fei Liang¹, Peng Zhao¹, Yongxiang Feng¹, Huichao Chai¹, Weihua He¹, Jing Li², and Wenhui Wang¹ ¹Tsinghua University, CHINA and ²Capital Normal University, CHINA

W060.b REPRODUCTION OF INCREASED MUSCLE CONTRACTION FORCE BY FLAVONOIDS USING A MODEL DEVICE WITH ARTIFICIAL

SKELETAL MUSCLE

Kota Kishishita, Tomohiro Nakamura, Marino Mizutani, and Sho Yokoyama Osaka Institute of Technology, JAPAN

Liquid Biopsy and Sample Preparation

M062.b DEPLETION OF TUMOUR CELLS FROM ~40 ML SALVAGED BLOOD AT ~5 ML/MIN LEVERAGING MODIFIED PERFECT FILTERS COMBINED WITH LEUKOCYTE-DEPLETED FILTER

Yi Zhang¹, Xiaoqing Zhang², Qin<mark>gme</mark>i Xu¹, Songtao Dou¹, Xiangyang Guo², and Wei Wang^{1,3,4}

¹Peking University, CHINA, ²Peking University Third Hospital, CHINA, ³National Key Laboratory of Advanced Micro and Nano Manufacture Technology, CHINA, and ⁴Beijing Advanced Innovation Center for Integrated Circuits, CHINA

M063.b ROBOTIC CENTRIFUGAL MICROFLUIDICS: A NOVEL AUTOMATION PLATFORM FOR LARGE SAMPLE VOLUME APPLICATIONS DEMONSTRATED BY CELL-FREE DNA ISOLATION

Tu T. Truong¹, Yumi Kaku¹, Sara ElGenk¹, Moritz Bösenberg¹, Holger Sültmann², Timo Gemoll³, Nikolas C. C. von Bubnoff³, Sabrina Kartmann¹.⁴, Jan Lüddecke¹.⁴, Tobias Hutzenlaub¹.⁴, Nils Paust¹.⁴, Peter Juelg¹.⁴, Lea Kubetzko³, Stefanie Derer³, Martina Oberländer³, Alexander Katalinic³, Ruth Deck³, Christian Sina³, and Hauke Busch³

¹Hahn-Schickard, GERMANY, ²German Cancer Research Center (DKFZ), GERMANY, ³University of Lübeck (UKSH), GERMANY, and ⁴University of Freiburg (IMTEK), GERMANY

T061.b A MODULAR FINGER-ACTUATED FRUGAL APPROACH FOR POINT-OF-CARE BLOOD SAMPLE PREPARATION

Maiwenn Kersaudy Kerhoas Heriot Watt University, UK

T062.b HIGHLY MULTIPLEXED ANTIBIOTIC SUSCEPTIBILITY ASSAY EMPLOYING COMBINATORIAL PICOLITRE DROPLET GENERATION

Ashkan Samimi^{1,2}, Sundar Hengoju¹, and Miriam A. Rosenbaum^{1,2}

¹ Hans Knöll Institute, GERMANY and

² Friedrich Schiller University, GERMANY

T063.b STANDALONE ELECTROKINETIC PRECONCENTRATOR FOR ENHANCED DETECTION SENSITIVITY OF COMMERCIALLY AVAILABLE RAPID ASSAYS

Barak Sabbagh^{1,2}, Sinwook Park², and Gilad Yossifon²

¹Technion - Israel Institute of Technology, ISRAEL and

²Tel Aviv University, ISRAEL

W061.b ACOUSTOFLUIDIC IMMUNOFLUORESCENCE ENHANCEMENT FOR TEAR-BASED DIABETIC RETINOPATHY DIAGNOSIS

Hsuan-An Chen¹, Yan-Chin Yen¹, Sheng-Min Hsu², and Han-Sheng Chuang^{1,3}
¹National Cheng Kung University, TAIWAN, ²National Cheng Kung University Hospital, TAIWAN, and ³Medical Device Innovation Center, TAIWAN

W062.b ON-CHIP COLORIMETRIC ASSAY FOR POINT-OF-CARE LITHIUM BLOOD LEVEL DETERMINATION USING FINGER-PRICK-BLOOD

Carl Olsson¹, Federico Ribet¹, Janosch Hauser¹, Olof Beck², Fredrik Wikström², Martin Schalling², Lena Backlund², and Niclas Roxhed¹

1KTH Royal institute of Technology, SWEDEN and

Neurobiology/Neuroscience

W063.b SCREENING OF RNA OLIGONUCLEOTIDE BEACON (MIRNA) FOR NEURODEGENERATIVE BIOMARKERS DETECTION IN MICROFLOUDIC SYSTEMS

Weronika Z. Świtlik, Julia Anchimowicz, Magdalena Stobiecka, and Slawomir Jakiela

Warsaw University of Life Sciences, POLAND

Nucleic-Acid Analysis

M064.b A CENTRIFUGAL MICROFLUIDIC DEVICE CAPABLE OF SEQUENTIAL DISPENSING OF MULTIPLE SAMPLES FOR THE DETECTION OF MULTIPLE FOOD ALLERGENS

Daigo Natsuhara¹, Yuka Kiba², Shunya Okamoto¹, Moeto Nagai¹, Masashi Kitamura², and Takayuki Shibata¹ ¹Tovohashi University of Technology, JAPAN and ²Josai University, JAPAN

M065.b A PROGRAMMABLE DNA-BASED NANOSENSOR FOR SEQUENCE-BASED DETECTION AT SINGLE NUCLEOTIDE RESOLUTION

Eun Yeong Lee and Yong Shin Yonsei University, KOREA

²Karolinska Institutet, SWEDEN

M067.b DE NOVO ASSEMBLY OF YEAST GENOMES USING OPTICAL GENOME MAPPING

Luis M. Leal Garza¹, Albertas Dvirnas², Gaurav Goyal¹, Ikenna Obi³, Nasim Sabouri³, Tobias Ambjörnsson², and Fredrik Westerlund¹ ¹Chalmers University of Technology, SWEDEN, ²Lund University, SWEDEN, and ³Umeå University, SWEDEN

M068.b LAB-ON-FOIL MICROFLUIDIC CHIP FOR POC DIAGNOSTICS OF GENETIC DISORDER FABRICATED BY R2R UV NIL

Anja Haase

Joanneum Research Forschungsgesellschaft mbH, AUSTRIA

M070.b SYNCHRONIZED PHYSICO-CHEMICAL OPTIMIZATION ENABLES RAPID MICROFLUIDIC CONVECTIVE PCR

MinGin Kim, Vijay Ravisankar, Yassin A. Hassan, and Victor M. Ugaz Texas A&M University. USA

T064.b A CUSTOMIZED HEATER PATTERNING PLATFORM BASED ON CARBON BLACK-PDMS AND NICHROME WIRE

Juhee Lim and Joong Ho Shin
Pukvong National University, KOREA

T065.b AMPLIFICATION OF SERS INTENSITY FOR DOUBLE-STRANDED DNA DETECTION USING DIFFUSE REFLECTION FACILITATED BY AG/ZNO NANOWIRE ARRAYS

Yujin Jung, Jung Kim, Jong Hwan Lee, Sung Kyun Lee, Nam Hoon Kim, and Hong Gi Kim Korea Research Institute of Chemical Technology, KOREA

TO66.b AN INTEGRATED PLATFORM FOR EXTRACTION AND DETECTION OF CHLAMYDIA TRACHOMATIS DNA IN RESOURCE-LIMITED SETTINGS

Anton Stolt, Pablo Rodriguez Mateos, Alexander Iles, and Nicole Pamme

Stockholm University, SWEDEN

TO67.b ELECTROSTATIC MICROFILTRATION PERFORMS BETTER THAN THE COMMERCIAL KIT IN THE CAPTURE AND DETECTION OF LOW-ABUNDANCE CELL-FREE DNA (CFDNA)

Yaoping Liu¹, Matilda Yu Yan Ong², Melody Xing Yen Song², Joshua Raymond¹, Chia-Ching Chan¹, and Jongyoon Han^{1,3} ¹ Singapore - MIT Alliance for Research and Technology (SMART), SINGAPORE, ²Ngee Ann Polytechnic, SINGAPORE, and ³ Massachusetts Institute of Technology (MIT), USA

TO68.b MICROFLUIDIC PLATFORM FOR DNA SEQUENCE PROFILING TOWARDS EARLY DETECTION OF CANCER

Christine O'Keefe, Yang Zhao, Thomas R. Pisanic, Weiwen Cui, Tian-Li Wang, le-Ming Shih, and Tza-Huei Wang Johns Hopkins University, USA

TO69.b SIMPLE MOLECULAR DIAGNOSTIC TECHNIQUES FROM SAMPLE PREPARATION USING AMINE-FUNCTIONALIZED DIATOMACEOUS EARTH (AMINE-DE) TO ACCURATE MUTATION DETECTION BY HOT-SPOT-SPECIFIC PROBE (HSSP)

Hyo Joo Lee, Bonhan Koo, Yoon Ok Jang, Huifang Liu, and Yong Shin Yonsei University, KOREA

ZNO-AU-SERS DIRECT NUCLEIC ACID AMPLIFICATION SYSTEM FOR RAPID AND SENSITIVE MOLECULAR DIAGNOSTICS

Myoung Gyu Kim1, Kwan Hee Lee2, Mi Yeon Jue2, Jun Ki Kim2, and Yong Shin1 ¹University of Yonsei, KOREA and ²University of Ulsan College of Medicine, KOREA

A DIGITAL MICROFLUIDIC APPROACH TO ANALYZING W064.b FORENSIC SAMPLES

Mohamed Elsayed¹, Leticia Bodo¹, Jonathan Millman², and Aaron Wheeler1 ¹University of Toronto, CANADA and ²Centre of Forensic Sciences, CANADA

W065.b AN EASY-TO-USE MULTIPLEX PCR CHIP BY USING WAX FILM FOR SEALING AND CONTROLLABLE RELEASE OF PRIMERS

Yuanyue Zhang, Nan Li, and Youchun Xu Tsinghua University, CHINA

AUTOMATION OF DIGITAL DROPLET PCR USING CENTRIFUGAL W066.b MICROFLUIDICS FOR HIGHLY SENSITIVE DETECTION AND **QUANTIFICATION OF SARS-COV-2 VIRAL RNA**

Lidija Malic¹, Liviu Clime¹, Byeong-Ui Moon¹, Christina Nassif¹, Dillon Da Fonte¹, Matthias Geissler¹, Aaron Bessoff¹, Luke Lukic¹, Mojra Janta¹, Denis Charlebois², and Teodor Veres¹ ¹National Research Council Canada, CANADA and ²Canadian Space Agency, CANADA

FAST AND ROBUST DETECTION OF SCLEROTIUM ROLFSII VIA W067.b WORKFLOW INTEGRATION OF IFAST-BASED EXTRACTION AND LAMP

Phanupong Changtor^{1,2}, Pablo Rodriguez Mateos¹, Kittisak Buddhachat², Nonglak Yimtragool², Wandee Wattanachaiyingcharoen², Alexander Iles1, and Nicole Pamme1 ¹Stockholm University, SWEDEN and ²Naresuan University, THAILAND

W068.b MULTIPLEXED DETECTION OF MICRORNA BIOMARKERS VIA CRISPR-CAS-POWERED GRAPHICALLY-ENCODED HYDROGEL BIOSENSORS

Haoliang Lu, Erol Hasan, and Dana Alsulaiman King Abdullah University of Science and Technology, SAUDI ARABIA

SPATIAL MULTIPLEXING AND QUANTITATIVE MIRNA DETECTION OF W069.b PLANT TISSUE USING NANOLITER WELL ARRAYS

Jennifer Fang and Patrick S. Doyle Massachusetts Institute of Technology, USA

Pathogen Detection & Antibiotics

M071.b A MICROFLUIDIC COMBINATORY ANTIBIOTIC CONCENTRATION GRADIENT GENERATOR INTEGRATING SURFACE-ENHANCED RAMAN SPECTROSCOPY FOR MULTIPARALLEL ANTIMICROBIAL SUSCEPTIBILITY TESTING

Yu-Tung Yeh and Nien-Tsu Huang National Taiwan University, TAIWAN

M072.b COLLECTION OF STREPTOCOCCUS PYOGENES FROM PEDIATRIC PATIENTS WITH PHARYNGITIS USING THE CANDYCOLLECT DEVICE

Wan-chen Tu¹, Andrea Blom², Ingrid Jeacopello¹,
Victoria A. M. Shinkawa¹, Daniel B. Hatchett¹,
Juan C. Sanchez¹, Anika M. McManamen¹,
Xiaojing Su¹, Elena Alfaro², Alexandra Lindstrom²,
Bridget L. Johnson², Erwin Berthier¹,
Sanitta Thongpang¹,³, Ellen R. Wald²,
Gregory P. DeMuri², and Ashleigh B. Theberge¹
¹University of Washington, USA, ²University of Wisconsin, USA, and
³Mahidol University, THAILAND

M073.b IMPROVING ACCURACY OF DIGITAL MELT VIA OLIGONUCLEOTIDE-ENABLED CURVE ALIGNMENT

Amelia Traylor, Pei-Wei Lee, Kuangwen Hsieh, Weiwen Cui, and Jeff Tza-Huei Wang Johns Hopkins University, USA

M074.b LONG-TERM STORAGE OF READY-TO-USE REAGENTS FOR POINT-OF-CARE ISOTHERMAL NUCLEIC ACID TESTING IN RESOURCE-POOR SETTINGS

Giulia Core, Jonath<mark>an M.</mark> Cooper, and Julien Rebo<mark>ud</mark> *University of Glasgow, UK*

M075.b OXYGEN CONSUMPTION MONITORING AS A METHOD TO EXPLORE HETERORESISTANCE IN MIXED BACTERIAL POPULATIONS EXPOSED TO ANTIBIOTIC TREATMENT

Petra Juskova¹, Steven Schmitt², Adrian Egli³, and Petra S. Dittrich¹

1ETH Zürich, SWITZERLAND, ²Myria Biosciences AG, SWITZERLAND, and

3University of Zurich, SWITZERLAND

M076.b RAPID ANTIMICROBIAL SUSCEPTIBILITY TESTING IN SLIPCHIPS

Ka Hei Wat^{1,2}, Dhruv Mehra², Miao Xu², Ho Cheung Shum^{1,2}, and Sammer UI Hassan^{1,2}

¹ Advanced Biomedical Instrumentation Centre, HONG KONG and ² University of Hong Kong, HONG KONG

T071.b AN ENCAPSULATED SILVER/CHITOSAN HYDROGEL AS A LONG-ACTING DELIVERY VEHICLE FEATURING WITH ATTRACTED-KILLED INHIBITION MECHANISM IN RALSTONIA SOLANACEARUM

Yi-Hsin Chien, Bon-Yen Lin, and Han-Hsiang Shih Feng Chia University, TAIWAN

TO72.b DROPLET MICROFLUIDIC AND DEEP LEARNING POWERED APPROACH FOR LABEL-FREE ANTIMICROBIAL SUSCEPTIBILITY TESTING FOR COLISTIN IN CLINICAL ISOLATES

Justine Riti¹, Guillaume Sutra¹, Thierry Naas^{2,3,4}, Hervé Volland¹, Stéphanie Simon¹, and Karla Perez-Toralla¹

¹ CEA, FRANCE, ²APHP Hôpital Bicêtre, FRANCE, ³Université

Paris-Saclay-INSERM-CEA, FRANCE, and ⁴Associated French

National Reference Center for Antibiotic Resistance, FRANCE

T073.b INTEGRATING A LOLLIPOP-INSPIRED MICROFLUIDIC ORAL SAMPLING DEVICE WITH RAPID GROUP A STREPTOCOCCUS TESTING

Juan C. Sanchez¹, Victoria A. M. Shinkawa¹, Ingrid Jeacopello¹, Xiaojing Su¹, Ellen R. Wald², Gregory P. DeMuri², Erwin Berthier¹, Sanitta Thongpang^{1,3}, and Ashleigh B. Theberge¹

1 University of Washington, USA, ² University of Wisconsin, USA, and ³ Mahidol University, THAILAND

T074.b MICROFLUIDIC PLATFORM TO VISUALIZE AND QUANTIFY BACTERIAL RESPONSE TO DYNAMIC DRUG TREATMENTS

Friederike L. Born, Petra Jusková, and Petra S. Dittrich ETH Zürich, SWITZERLAND

T075.b PORTABLE DEVICES FOR RNA PURIFICATION, AMPLIFICATION, AND DETECTION OF MAYARO VIRUS

Z. Hugh Fan, Morteza Alipanah, John A. Lednicky, and J. Glenn Morris University of Florida, USA

TO76.b RAPID DETECTION OF CARBAPENEM RESISTANT ENTEROBACTERIACEAE (CRE) ANTIBIOTIC RESISTANCE WITH STANDALONE POINT-OF-CARE (POC) SELF-COALESCING MICROFLUIDIC

Lily M. Kamat^{1,2,3}, Priscilla Delgado^{1,3}, Ali Haider⁴, Jesse Waggoner⁴, and David R. Myers^{1,2,3}

¹Emory University, USA, ²Georgia Tech, USA, ³Aflac Cancer and Blood Disorders Center of CHOA, USA, and ⁴Emory University School of Medicine, USA

W070.b A HEAT-ACTIVATED ANTIMICROBIAL MICROFILM FOR ELIMINATING PATHOGEN TRANSMISSION IN HIGH TOUCH SURFACES Dimitris Barmpakos^{1,2,3}, Stavroula Kritikou⁴, Athanasios Tsakris⁴,

Georgia Vrioni⁴, and Nikos Chronis^{1,2}
¹National Centre for Scientific Research "Demokritos", GREECE,
²National Technical University of Athens, GREECE, ³University of
West Attica, GREECE, and ⁴National and Kapodistrian University
of Athens, GREECE

W071.b AN EXTRACORPOREAL PLATELET-POOR PLASMA (PPP) CLOT HEMOADSORPTION FOR IMPROVED TREATMENT OF BACTEREMIA

Bong Hwan Jang, Su Hyun Jung, Seyong Kwon, Sung Jin Park, and Joo H. Kang

Ulsan National Institute of Science and Technology (UNIST), KOREA

W072.b DUAL MODULE DROPLET-BASED SERS MICROFLUIDIC SENSING PLATFORM FOR HER-2 POSITIVE EXOSOME DETECTION

Kwun Hei Willis Ho, Huang Lai, RouLin Zhang, Ching Ying Lam, YuTian Gu, and Mo Yang Hong Kong Polytechnic University, HONG KONG

W073.b LAB-IN-A-PACKAGE: DETECTING SALMONELLA IN WHOLE CHICKEN SAMPLES IN SITU

Akansha Prasad, Shadman Khan, Jonathan K. Monteiro, Jiuxing Li, Fatima Arshad, Liane Ladouceur, Lei Tian, Amid Shakeri, Carlos Filipe, Yingfu Li, and Tohid F. Didar McMaster University, CANADA

W074.b MOVING RAPID ANTIBIOTIC SUSCEPTIBILITY TESTING TO THE CLINIC: THE ROLE OF MASS-MANUFACTURING MICROFLUIDICS IN GENERATING CLINICAL DATA

Sarah Needs¹, Jessica Hayward¹, Stephen P. Kidd², and Alexander Edwards¹

¹University of Reading, UK and ²Hampshire Hospitals NHS Foundation Trust, UK

W075.b POWER-FREE HIV RNA EXTRACTION FROM WHOLE BLOOD FOR REAL-TIME SMARTPHONE-BASED DETECTION

Emeka Nwanochie¹, Hyunjin Lee¹, Dong Hong Lee¹, Eddy Odari², Steven Wereley¹, Tamara Kinzer-Ursem¹, and Jacqueline Linnes¹ Purdue University, USA and ²Jomo Kenyatta University of Science and Technology, KENYA

W076.b RAPID DIAGNOSIS OF ANTIMICROBIAL RESISTANCE USING FLOURESCENT PROBE-BASED MOLECULAR IMAGING AND MICROFLUIDIC SYSTEM

Brian Choi, Min Seok Lee, Hwi Hyun, Sungho Kim, Hajin Kim, Taejoon Kwon, and Joo H. Kang Ulsan National Institute of Science and Technology (UNIST). KOREA

Personalized Medicine

M077.b A THERMAL ACTIVATION METHOD TO IMPROVE SKIN PERMEABILITY FOR HIGHLY EFFICIENT EXTRACTION OF INTERSTITIAL FLUID

Hao Zheng, Zhihua Pu, Wangwang Zhu, Yuxiao Ma, Chengcheng Li, Xingguo Zhang, and Dachao Li Tianjin University, CHINA

M078.b DEVELOPMENT OF A FRUGAL TUMOR ON-CHIP PLATFORM FOR SCREENING DRUG-NANOCARRIERS

Dhruba Dhar, Soumen Das, and Jyotirmoy Chatterjee Indian institute of Technology, Kharagpur, INDIA

M079.b OVERCOMING CO-TRANSFECTION HURDLES FOR CELLULAR/GENE THERAPY: ON-CHIP SEQUENTIAL INTRACELLULAR DELIVERY OF GENETIC CODING MOLECULES VIA AN ACOUSTIC-ELECTRIC MICROFLUIDIC PLATFORM

Aida Z. Travatfard, Mohammad Aghaamoo, and Abraham P. Lee University of California, Irvine, USA

M080.b SILVER ELECTROCEUTICAL TECHNOLOGY TO TREAT SARCOPENIA

Min Young Kim¹, Hyun Young Shin², Sohae Yang¹, Aseer Intisar¹, and Minseok S. Kim^{1,2}

¹Daegu Gyeongbuk Institute of Science & Technology (DGIST), KOREA and ²CTCELLS, Inc, KOREA

TO77.b AN APTAMER-BASED MICRONEEDLE PATCH TO CONTINUOUSLY MONITOR BIOMARKERS OF CARDIOVASCULAR DISEASES

Sung-Chi Chang, Chih-Hung Wang, and Gwo-Bin Lee National Tsing Hua University, TAIWAN

TO78.b EXPLORING THE EFFECTS OF HIGH TEMPERATURE EXPOSURE ON RNA INTEGRITY FROM STABILIZED BLOOD SAMPLES IN REMOTE RESEARCH STUDIES

Filip Stefanovic, Lauren G. Brown, Yuting Zeng, Serena Nguyen, Victoria Shinakawa, Erwin Berthier, Amanda J. Haack, and Ashleigh B. Theberge University of Washington, USA

T079.b RAPID IDENTIFICATION OF THERAPEUTIC BACTERIOPHAGES FOR PERSONALIZED PHAGE THERAPY USING HIGH THROUGHPUT ALL-INCLUSIVE TABLETS

Fereshteh Bayat Bayat, Arwa Hilal, Mathura Thirugnanasampanthar, Carlos Filipe, Tohid F. Didar, and Zeinab Hosseinidoust McMaster University, CANADA

TO80.b THERANOSTICS MOLECULAR ROBOT: DETECT A MIRNA FROM TUMOR CELLS AND GENERATE THE DNA DRUG IN A LIPOSOME

Harune Suzuki¹, Ken Komiya², and Ryuji Kawano¹

¹ Tokyo University of Agriculture and Technology, JAPAN and

² Japan Agency for Marine-Earth Science and Technology, JAPAN

W077.b CELL PROCESSING FOR AUTOLOGOUS CELL THERAPY: HIGH-EFFICIENCY MICROFLUIDIC CELL SEPERATION AND WASHING DEVICES

An Eng Lim, Shan Mei Tan, and Shireen Goh Agency for Science, Technology and Research (A*STAR), SINGAPORE

W078.b METAL-POLYMER SERIES CONNECTION HYBRID STENT INTEGRATED WITH PI BASED WIRELESS PRESSURE SENSOR

Lei Wang, Dong-Su Kim, Nomin-Erdene Oyunbaatar, and Dong-Weon Lee Chonnam University, KOREA

W079.b RAPID IMMUNE RESPONSE ASSESSMENT FOR POST-INFUSION CAR-T PATIENTS THROUGH BIOPHYSICAL WBC ANALYSIS

Kwan Zen Nicholas Tan¹, Zeming Kerwin Kewk¹, Kai Yun Quek¹, Chin Ren Goh¹, Zhi Heng Nicholas Ng¹, Wei Inng Francesca Lorraine Lim², Yun Xin Chen², Michael E. Birnbaum³, and Jongyoon Han³ ¹Singapore - MIT Alliance for Research and Technology (SMART), SINGAPORE, ²Singapore General Hospital, SINGAPORE, and ³Massachusetts Institute of Technology, USA

W080.b WORKFLOW INTEGRATION FOR ELECTROCHEMICAL-BASED HOME-TESTING

Fabien Abeille¹, Bianka Fabinyi¹, Jelle Bannink¹, Thérèse Gorisse¹, Daniel-Stefan Cristea², Marko Blom¹, and Winnie E. Svendsen²

¹Micronit BV, NETHERLANDS and ²Technical University of Denmark, DENMARK

Protein Analysis & Proteomics

M081.b DIGITAL MAGNETIC PROXIMITY EXTENSION RPA-CRISPR/CAS12A-ASSISTED IMMUNOASSAY WITH ATTOMOLAR SENSITIVITY

Fangchi Shao, Jiumei Hu, Kuangwen Hsieh, Pengfei Zhang, Pataraiarin Akarapipad, Joon Soo Park, and Tza-Huei Wang Johns Hopkins University, USA

M082.b INTEGRATED STRATEGY FOR STREAMLINED SINGLE-CELL FUNCTIONAL PROTEOMICS AND SENSITIVE DOPAMINE DETECTION

Hsiung-Lin Tu¹, Sofani Gebreyesus¹, Gul Muneer¹, Ying Li¹, Asad Ali¹, Chih-Min Wang², and Yu-Ju Chen¹

¹Academia Sinica, TAIWAN and ²National Taiwan Ocean University. TAIWAN

T081.b DISPOSABLE, FLEXIBLE MICROFLUIDIC SYSTEM FOR RAPID, PRE-ANALYTICAL SEPARATION OF IGG ANTIBODIES FROM SERUM SAMPLES

Marcin Drozd, Katarzyna Tokarska, Zuzanna Tylenda, Sylwia Karoń, Kamil Żukowski, Mariusz Pietrzak, Elżbieta Malinowska, and Zbigniew Brzózka Warsaw University of Technology, POLAND

T082.b MAMMOTHFLUIDICS': AMINO ACID DATING OF FOSSILISED TEETH Laila Patinglag¹, Marc R. Dickinson², Kirsty EH. Penkman²,

and Kirsty J. Shaw¹

1 Manchester Metropolitan University, UK and ²University of York, UK

W081.b ELECTROKINETIC TRAPPING AND QUANTIFICATION OF HISTONES FROM PLASMA IN A MICROFLUIDIC DEVICE USING DEHYDRATED ISOELECTRIC GATES

Shadi Shahriari, Patricia P. Liaw, Alison E. Fox-Robichaud, and Ponnambalam Ravi Selvaganapathy McMaster University, CANADA

Testing for COVID-19, Rapid Virus Testing, Pandemic Management

M083.b APPLICATION OF ONE-POT DUAL-CLAMPED SERS-BASED DIAGNOSTIC PLATFORM IN THE DETECTION OF SARS-COV-2 FROM CLINICAL SAMPLES: COMPARISON WITH COMMERCIAL RAPID ANTIGEN TEST KITS

Kiran Kaladharan¹ and Fan-Gang Tseng¹.²
¹ National Tsing Hua University, TAIWAN and ² Academia Sinica, TAIWAN

M084.b HPV 16 DNA AMPLIFICATION AND DETECTION FROM CELL LYSATES, ON A PAPER SUBSTRATE, WITH A LATERAL FLOW READOUT

Luke Brennan, Francesca Hamacher, Ana Claure, Jacqueline Linnes, and Natalia Rodriguez

Purdue University, USA

M085.b INTEGRATED MICROFLUIDIC PLATFORM AND BIO-OPTICAL SENSOR SYSTEM: A RAPID AND SENSITIVE SAMPLE-TO-ANSWER DIAGNOSTIC APPROACH FOR EMERGING INFECTIOUS DISEASES

Bonhan Koo, Myoung Gyu Kim, and Yong Shin *Yonsei University, KOREA*

M086.b ON-CHIP RPA AND CAS12A ASSAY USING AUNIS-BASED PLASMONIC PCR SYSTEM FOR REAL-TIME SARS-COV-2 DETECTION

Eun-Sil Yu, Hyejeong Jeong, Jaehyeok Park, Jaemyeong Kwon, and Ki-hun Jeong Korea Advanced Institute of Science and Technology (KAIST), KOREA

M087.b RNASTICK: HASSLE-FREE DIPSTICK BASED RNA ISOLATION FROM WASTEWATER

Shruti Ahuja, Maria D'costa, Avani Kulkarni, Kiran Kondabagil, and Siddharth Tallur Indian Institute of Technology, Bombay, INDIA

T083.b CENTRIFUGAL FORCE-ASSISTED THERMAL CONVECTION PCR DEVICE FOR RAPID DETECTION OF VIRAL RNA IN SALIVA: A PROMISING POINT-OF-CARE TESTING APPROACH

Masato Saito¹, Jonathan Briones¹, Ryota Kokutani², Yasutaka Minegishi², Shigeto Hamaguchi¹, and Satoshi Kutsuna¹

1 Osaka University, JAPAN and 2 NIPPON GENE Co., LTD., JAPAN

T084.b IMMUNOCHROMATOGRAPHIC HCG TEST STRIPS USING GOLD NANOTRIANGLES

Asahi Kimura, Mao Hamamoto, and Hiromasa Yagyu Kanto Gakuin University, JAPAN

T085.b LAB-ON-A-FOIL MICROFLUIDIC SYSTEM FOR SARS-COV-2 DIAGNOSTICS

Kamil Żukowski¹, Katarzyna Tokarska¹, Marcin Drozd¹, Mariusz Pietrzak¹, Adam Nowiński², Elżbieta Malinowska¹, and Zbigniew Brzózka¹ ¹ Warsaw University of Technology, POLAND and ² Screenmed, POLAND

T086.b POINT-OF-CARE PATHOGEN TESTING PLATFORM WITH INTEGRATED SAMPLE AMPLIFICATION CONTROL

Navaporn Sritong, Riley J. Brown, Karin F. K. Ejendal, and Jacqueline C. Linnes Purdue University, USA

T087.b TOWARDS DETECTION OF AIRBORNE PATHOGENIC MICROORGANISMS BY A MICROTOTAL ANALYSIS SYSTEM

Guillaume Blaire, Manuel Alessio, Melissa Baque, Fabrice Navarro, and Jean-Maxime Roux CEA Leti, FRANCE

W082.b ABSOLUTE ELECTRICAL QUANTIFICATION OF TARGET NUCLEIC ACID USING DIGITAL SORT-ENABLED COUNTING (DISCO)

Yi Liu and Xu Cui University of Singapore, SINGAPORE

W083.b DIGITAL FOCUS ASSAY PLATFORM FOR THE QUANTIFICATION OF VIABLE VIRUSES

Siddharth Raghu Srimathi, Maxinne A. Ignacio, Margaret A. Scull, and Don L. DeVoe University of Maryland, USA

W084.b INEXPENSIVE-BY-DESIGN, VERSATILE AND INTUITIVE MOLECULAR DIAGNOSTICS PLATFORM FOR POINT OF USE

Laura Folkertsma^{1,2}, Alvaro J. Conde¹, Brigitte B. Bruijns^{3,4}, Arno C. Pol⁵, Elsa Dragt⁶, Michelle G. van Heteren¹, Elwin X. Vrouwe¹, Lisanne P. Karbaat⁷, Frank van der Hoek⁸, Marko Blom¹, Tom Evers⁶, Han J.W. Zendman⁵, Herbert Torfs², and Ronny van 't Oever¹

- ¹Micronit BV, NETHERLANDS, ²Salvitat BV, NETHERLANDS,
- ³Saxion University of Applied Sciences, NETHERLANDS,
- ⁴Politieacademie, NETHERLANDS, ⁵NYtor, NETHERLANDS,
- ⁶DE-design, NETHERLANDS, ⁷Holland Innovative, NETHERLANDS, and ⁸Fris en Fruitig VZW

W085.b LYOPHILIZED CHEMILUMINESCENCE (CL) BASED MICROCAPILLARY FLOW ASSAY (MCFA) LAB CHIPS FOR RAPID AND HIGH-SENSITIVE TESTS OF SARS-COV-2

Supreeth Setty¹, Heeyeong Jang¹, Nogi Park², Keun Seok Seo², and Ahn Chong¹

¹University of Cincinnati, USA and ²Mississippi State University, USA

W086.b RAPID SINGLE-ROUND POOL TESTING OF INFECTIOUS DISEASE ENABLED BY MULTICOLOR DIGITAL MELTING PCR

Xu Cui

University of Singapore, SINGAPORE

Others

M088.b CAPTURE AND CHARACTERIZATION OF EXTRACELLULAR VESICLES BY DIELECTROPHORESIS

Charlotte Neel^{1,2}, Jean F. Audibert¹, Sameh Obeid², Rasta Ghasemi¹, Sakina Bensalem¹, Zuzana Krupova³, Myriam Taverna², and Bruno Le-Pioufle¹

¹ENS Paris-Saclay, FRANCE, ²Institut Galien Paris-Saclay, FRANCE, and ³Excilone, FRANCE

TO88.b FULLY-AUTOMATIC MICROFLUIDIC BEAD-BASED ASSAY FOR FAST
QUANTIFICATION OF MULTIPLE KIDNEY FAILURE BIOMARKERS
Gloria Porto

École Polytechnique Fédérale de Lausanne, SWITZERLAND

W087.b A MICROFLUIDIC SYSTEM INTEGRATED WITH A SHEAR FORCE CONTROL DEVICE TO OPTIMIZE SELECTION OF APTAMERS TARGETING FOLATE RECEPTOR ALPHA

Yang-Sheng Shao, Yi-Cheng Tsai, and Gwo-Bin Lee University of Tsing Hua, TAIWAN

W088.b SINGLE MOLECULE DRUG-DNA INTERACTION STUDIES USING NANOFLUIDIC DEVICES

Sriram Kk, Kseniya Ihnatsiuk, Raphael de Paiva, Andrew Kellett, and Fredrik Westerlund

Chalmers University of Technology, SWEDEN

c - Fundamentals in Microfluidics and Nanofluidics

Acousto- and Magnetofluidics

M089.c ACOUSTIC SENSING OF BIOANALYTES WITH FUNCTIONALIZED MICROBUBBLES

Marc Prudhomme¹, Mahmoud Addouche¹, Jacques Fattaccioli², and Franck Chollet¹

¹FEMTO-ST, FRANCE and ²ENS Paris, FRANCE

M090.c ACOUSTOFLUIDICS IN LAB-ON-A-ROBOT APPLICATION

Cornel Dillinger¹, Till Häussner¹, Nitesh Nama², and Daniel Ahmed¹

1ETH Zürich, SWITZERLAND and 2University of Nebraska, Lincoln, USA

M091.c FULLY MICROFABRICATED SURFACE ACOUSTIC WAVE TWEEZER FOR (SUB-)MICRON PARTICLE FOCUSING

Armaghan Fakhfouri¹, Melanie Colditz¹, Citsabehsan Devendran², Stefan Jacob³, Kateryna Ivanova¹, Adrian Neild², and Andreas Winkler¹ Leibniz IFW Dresden, GERMANY, ²Monash University, AUSTRALIA, and ³Physikalisch-Technische Bundesanstalt, GERMANY

M092.c LEVERAGING PIEZOELECTRIC MICROMACHINED ULTRASONIC TRANSDUCERS (PMUT) FOR 3D ACOUSTOFLUIDIC MANIPULATION OF PARTICLES AND ORGANOIDS

Emilie Vuille-dit-Bille^{1,2}, Sarah Heub¹, Dara Z. Bayat¹, Marc-Alexandre Dubois¹, Thomas Overstolz¹, Michel Despont¹, Selman Sakar², and Gilles Weder¹ ¹CSEM SA, SWITZERLAND and ²École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

M093.c NAVIGATION OF ULTRASOUND MICROROBOTS THROUGH OBSTACLES BY MEANS OF AN AUTONOMOUS SYSTEM

Mahmoud Medany¹, Sarp Sepici¹, S. Karthik Mukkavilli², and Daniel Ahmed¹

¹ETH Zürich, SWITZERLAND and ²IBM Research, SWITZERLAND

M094.c SILICA SEED PARTICLES IMPROVE NANOPARTICLE ACOUSTIC TRAPPING EFFICIENCY AND THROUGHPUT

Megan Havers¹, Thierry Baasch¹, Andreas Lenshof¹, Mikael Evander², and Thomas Laurell¹

¹Lund University, SWEDEN and ²AcouSort AB, SWEDEN

M095.c UPSCALING OF ACOUSTIC FOCUSING OF PARTICLES IN A PARALLEL CHANNEL CONFIGURATION

Amaury A. de Hemptinne, Pierre P. Gelin, and Wim W. De Malsche Vrije Universiteit Brussel (VUB), BELGIUM

T089.c ACOUSTICALLY LEVITATED DROPLET AS A MICROGRAVITY SIMULATOR

Sreejith Kamalalayam Rajan, Aditya Vashi, and Nam-Trung Nguyen Griffith University, AUSTRALIA

TO90.c CELL CONCENTRATION BY USING SIMPLE ACOUSTOFLUIDIC SYSTEM WITH LOW SAMPLE LOSS FOR RARE CELL APPLICATIONS

Natsumi Hirata, Hayato Yamaki, and Takeshi Hayakawa Chuo University, JAPAN

T091.c HIGH-POWER ACOUSTOFLUIDICS DRIVEN BY LINE DOUBLE-PARABOLIC-REFLECTORS WAVE-GUIDED HIGH-POWER ULTRASONIC TRANSDUCER

Enrico Corato¹, Wei Qiu¹, Takeshi Morita², and Per Augustsson¹ ¹Lund University, SWEDEN and ²University of Tokyo, JAPAN

T092.c MANIPULATION OF THE POSITION AND ORIENTATION OF PROLATE SPHEROIDS IN A PSEUDO-STANDING SURFACE ACOUSTIC WAVE FIELD

Sebastian Sachs¹, Christian Cierpka^{1,2}, and Jörg König¹

1 Technische Universität Ilmenau. GERMANY and ²Lund Universiv. SWEDEN

T093.c PRECISION GUIDED NON-INVASIVE TREATMENT OF ANEURYSMS USING ACOUSTIC ROBOTICS

Mahmoud Medany and Daniel Ahmed ETH Zürich, SWITZERLAND

T094.c SURFACE ACOUSTIC WAVE MICROFLUIDIC DEVICE ENABLES RAPID PROTEIN CONCENTRATION ANALYSIS IN BLOOD PLASMA

Nakul Sridhar¹, Julie McAfee², Rachelle Nuss², Kathryn Hassell², and Xiaoyun Ding¹

¹University of Colorado, Boulder, USA and ²University of Colorado, Anschutz, USA

W089.c ACOUSTOFLUIDIC PROPERTIES OF POLYSTYRENE PARTICLES

Alexander Edthofer¹, Jakub Novotny², Andreas Lenshof¹, Thomas Laurell¹, and Thierry Baasch¹
¹Lund University, SWEDEN and ²Institute of Analytical Chemistry of the CAS, CZECH REPUBLIC

W090.c ECHOTILT: A LOW-COST ACOUSTOFLUIDIC METHOD FOR HIGH FLOW RATE ENVIRONMENTAL NANOPLASTIC ENRICHMENT

Liesbeth G. B. van der Geer, Martim Costa, Björn Hammarström, Selim Tanriverdi, Haakan N. Joensson, Martin Wiklund, and Aman Russom KTH Royal institute of Technology. SWEDEN

W091.c INVESTIGATION ON PARTICLE DEFLECTION IN SURFACE ACOUSTIC WAVE MICROFLUIDIC DEVICE FOR EFFICIENT EXOSOME EXTRACTION

Tao Peng University of Macau, CHINA

W092.c MICROSCALE PARTICLE MANIPULATION USING AN ACOUSTOFLUIDIC END EFFECTOR ASSISTED BY ROBOTIC ARM

Jan Durrer¹, Prajwal Agrawa¹¹, Ali Ozgul¹, Stephan Neuhuass², Nitesh Nama³, and Daniel Ahmed¹

1ETH Zürich, SWITZERLAND, ²University of Zurich, SWITZERLAND, and ³University of Nebraska, Lincoln, USA

W093.c RECONFIGURATION OF ACOUSTOFLUIDICS VIA TUNING THE COMPETITION BETWEEN DIFFERENT WAVE MODES

Yu Gao and Xiaoyun Ding University of Colorado, Boulder, USA

W094.c THE ACOUSTOPHORETIC MIGRATION AND SEPARATION OF SUSPENDED CELLS IN ACOUSTIC IMPEDANCE GRADIENTS

Mahdi Rezayati Charan and Per Augustsson Lund University, SWEDEN

Capillary Microfluidics

M096.c LABEL-FREE ANTIMICROBIAL SUSCEPTIBILITY TESTING IN MICROFLUIDIC 'DIP STICKS'

Zhuoling Yu¹, Sarah H. Needs², Brian V. Jones¹, Alexander D. Edwards², and Nuno M. Reis¹

¹University of Bath, UK and ²University of Reading, UK

M097.c ON THE DYNAMIC CONTACT ANGLE OF CAPILLARY-DRIVEN MICROFLOWS IN OPEN CHANNELS

Jodie C. Tokihiro, Jean Berthier, Anika M. McManamen, David N. Phan, Sanitta Thongpang, and Ashleigh B. Theberge University of Washington. USA

T095.c 3D INVESTIGATION OF DROPLET FORMATION AND GEOMETRY-INDUCED SINGLE DROPLET COALESCENCE USING

MICRO-COMPUTED TOMOGRAPHY

Bastian Oldach, Carolin Müller, Philipp Wintermeyer, and Norbert Kockmann TU Dortmund University, GERMANY

T096.c MICROFLUIDIC GENERATION OF MICRO-SOAP BUBBLES FOR AIRBORNE MOLECULAR ROBOT

Rina Takagi and Ryuji Kawano Tokyo University of Agriculture and Technology, JAPAN

TO97.C TIME- AND DISTANCE-RESOLVED FLUID FLOW IN VERTICAL MICROFLUIDIC STRIPS: A NEW OPEN SOURCE ROBOTIC PLATFORM FOR QUANTITATIVE, MULTIPARAMETER MEASUREMENT OF GLOBAL HAEMOSTASIS AND BLOOD FUNCTION

Rüya M. Sarıyer¹, Kirandeep Gill², Sarah H. Needs¹, Daniel Hodge¹, Nuno M. Reis², Chris I. Jones¹, and Alexander D. Edwards¹ University of Reading, UK and ²University of Bath, UK

W095.c DETERMINISTIC CELL-PARTICLE PAIRING DEVICE IN THE OPEN MICROFLUIDICS ARCHITECTURE TOWARD SINGLE-CELL RNA SEQUENCING

Hiroto Teratani, Tomoki Murakami, and Hiroaki Suzuki Chuo University, JAPAN

W096.c MULTIPHASE RESERVOIR SUBCIRCUIT FOR MICROFLUIDIC CHAIN REACTION OF IMMISCIBLE AND MISCIBLE MULTIPHASE LIQUIDS IN CAPILLARIC CIRCUITS

Geunyong Kim, Andy Ng, David Juncker McGill University, CANADA

Centrifugal Microfluidics

M098.c A PORTABLE LAB ON A DISC PLATFORM FOR CONTINUOUS HANDLING OF WIDE RANGE OF SAMPLE VOLUME

Sourav Acharya, Jasleen Chhabra, Soumyo Mukherji, and Debjani Paul

Indian Institute of Technology, Bombay, INDIA

M099.C AUTOMATING COMPLEX DNA LIBRARY PREPARATION PROCEDURES IN CENTRIFUGAL MICROFLUIDICS

Daniel Brassard¹, Jimin Guo¹, Nadine Adam², Adrian Vester², Julie Shay², Caroline Miville-Godin¹, Mojra Janta-Polczynski¹, Jason Ferreira¹, Maxence Mounier¹, Kyle Tapp², Ana Pilar², and Matthew Shiu¹

¹National Research Council, CANADA, ²Health Canada, CANADA, and

3 Canadian Space Agency, CANADA

M100.c FAST AND BUBBLE-FREE FILLING OF NANOIMPRINTED HIGH-DENSITY PICOLITER WELL ARRAYS FOR DIGITAL ASSAYS ENABLED BY CENTRIFUGAL MICROFLUIDICS

Salman Murad¹, Marvin Heyer¹, Fabian Lickert², Julian Menges², Silvia Calabrese², Tobias Hutzenlaub^{1,2}, Nils Paust^{1,2}, and Peter Juelg^{1,2}

1 IMTEK, GERMANY and 2 Hahn-Schickard, GERMANY

M101.c INDUCTION HEATING FOR LAB-ON-A-DISC APPLICATIONS

Tadej Kokalj¹, Marko Mahne², Indradumna Banerjee³, Franci Vode¹, Aman Russom³, and Matjaz Vencelj²

¹Institute of Metals and Technology, SLOVENIA, ²Jozef Stefan Institute, SLOVENIA, and ³KTH Royal Institute of Technology, SWEDEN

TO98.c A RAPID PCR SYSTEM BASED ON CENTRIFUGAL MICROFLUIDICS WITH TEC-BASED CONTACT HEATING

Yu Wu and Youchun Xu Tsinghua University, CHINA

T099.c CENTRIFUGAL GRAVITY ENABLES VOID-FREE PRIMING OF DEAD-END NANOLITER CAVITIES

Yu-Kai Lai¹, Jacob F. Hess^{1,2}, and Nils Paust^{1,2} ¹*University of Freiburg, GERMANY and ²Hahn-Schickard, GERMANY*

T100.c FLIPPING AS A CONTROL STRATEGY FOR CENTRIFUGAL MICROFLUIDIC SYSTEMS

Ali Gholizadeh, Gabriel Mazzucchelli, and Tristan Gilet *University of Liège, BELGIUM*

W097.C A METHOD FOR BUBBLE-FREE REAGENT DISCRETIZATION AND AUTOMATED DIGITAL POYMERASE CHAIN REACTION ON CENTRIFUGAL MICROFLUIDICS

Tae-Hyeong Kim, Daniel Brassard, Lidija Malic, Keith J. Morton, Christina Nassif, Dillon Da Fonte, Luke Lukic, Jason Ferreira, Caroline Miville-Godin, Maxence Mounier, Aaron Bessoff, and Teodor Veres National Research Council Canada, CANADA

W098.c ALGORITHMIC DESIGN OPTIMIZATION AND PROGRAMMABILITY OF HIGHLY INTEGRATED LAB-ON-A-DISC SYSTEMS

Jens Ducree Dublin City University, IRELAND

W099.C DEVELOPMENT OF AN AUTOMATED NUCLEAR ACID AMPLIFICATION ASSAY WITH ELECTROCHEMICAL MONITORING USING AN ELECTRIFIED-LAB-ON-A-DISC PLATFORM

Fabian O. Romero-Soto¹, Meysam Saeedi¹, Dario Mager², Mohammad M. Aeinehvand¹, and Sergio O. Martinez-Chapa¹

¹ Tecnologico de Monterrey, MEXICO and ² Karlsruhe Institute of Technology, GERMANY

W100.c HYPERGRAVITY CELL CULTURE SYSTEM THROUGH SPINNING OF THE MAGNETIC COUPLING DISK

Byeongwook Jo and Shoji Takeuchi University of Tokyo, JAPAN

Digital Microfluidics

M102.c ABSOLUTE QUANTIFICATION OF NUCLEIC ACID ON DIGITAL MICROFLUIDICS PLATFORM BASED ON SUPERHYDROPHOBIC-SUPERHYDROPHILIC MICROPATTERNING

Li Meng¹, Mingzhong Li¹, Man-Kay Law¹, Pui-In Mak¹, and Rui P. Martins^{1,2}

¹University of Macau, CHINA and ²Universidade de Lisboa, PORTUGAL

M103.c ENABLING LONG-TERM LIQUID HANDLING IN DIGITAL MICROFLUIDICS PLATFORMS FOR CELL CULTURE SETTINGS

Oksana K. Savchak and Burcu Gumuscu

Eindhoven University of Technology, NETHERLANDS

T102.c DEVELOPMENT OF A 3D FABRICATED DIGITAL MICROFLUIDIC PLATFORM FOR MULTIPLEXED OPERATIONS ON LARGE ELECTRODE ARRAYS

Mert Ozden and Bu<mark>rcu Gu</mark>muscu-Sefunc Eindhoven University of Technology, NETHERLANDS

T103.c HIGH-THROUGHPUT AND LOW-COST ORTHOGONAL ELECTRODE MATRIX DIGITAL MICROFLUDICS CHIP

Yufan Wang¹, Chi Chung Tsoi³, Xiaodong Lin², Haoran Li¹, Ren Shen¹, Xuming Zhang³, and Yanwei Jia¹

¹University of Macau, CHINA, ²Macau Zhuhai UM Science & Technology Research Institute, CHINA, and ³Hong Kong Polytechnic University, CHINA

W101.c A PORTABLE, INTEGRATED SYSTEM FOR ON-CHIP ANTIBIOTIC SUSCEPTIBILITY TESTING

Caiwei Li

University of Macau, MACAO

W102.c DRUG SCREENING OF PRIMARY TUMOR CELLS ON SMART DIGITAL MICROFLUIDICS FOR CANCER PRECISION MEDICINE

Yingying Liu, Caiwei Li, Wenhao Hui, Pui-in Mak, Rui P. Martins, and Yanwei Jia

University of Macau, CHINA

W103.c POLARITY-DEPENDENT ELECTRO-WETTING OR -DEWETTING ON A CONDUCTIVE SILICON SUBSTRATE

Lele Zhou

ShanghaiTech University, CHINA

Droplet Microfluidics

M104.c "PICO'CLOCK" - HIGHLY CONTROLLABLE PICOINJECTION FOR TIMED REACTIONS IN DROPLET MICROFLUIDICS

Jolien Breukers and Jeroen Lammertyn KU Leuven, BELGIUM

M105.c A NOVEL STRATEGY TO SYNTHESIZE FLUORINATED SURFACTANT AND ITS APPLICATIONS IN DROPLET MICROFLUIDICS

Jiyuan Yao^{1,2}, Lingling Shui², Shuting Xie², Loes Segerink¹, and Sergii Pud¹

¹University of Twente, NETHERLANDS and

²South China Normal University, CHINA

M106.c CHARACTERIZATION OF DROPLET GENERATION THROUGH A POST-ARRAY DEVICE

Shuzo Masui, Yusuke Kanno, and Takasi Nisisako Tokyo Institute of Technology, JAPAN

M107.c DOUBLING ACCELERATION OF SYNTHESIS SPEED OF METAL COMPLEXES BY SCALE EFFECTS IN MICRODROPLETS

Masashi Kobayashi¹, Tomoya Murashige¹, Takashiro Akitsu², Hiroyuki Fujita³, Takashi Tanii¹, Masahiro Furuya¹, Tetsushi Sekiguchi¹, Shuichi Shoji¹, Risa Fujita⁴, and Daiki Tanaka⁴

¹ Waseda University, JAPAN, ² Tokyo University of Science, JAPAN, ³ Canon Medical Systems Corporation, JAPAN, and ⁴ Research Organization for Nano & Life Innovation, JAPAN

M108.c ELECTROKINETIC DESALTING AND SALTING OF WATER-IN-OIL DROPLETS

Aparna Krishnamurthy and Robbyn K. Anand lowa State University, USA

M109.c FORMATION OF DNA-FUNCTIONALIZED COLLOIDAL CRYSTALS IN A MICRODROPLET

Naotomo Tottori¹, Azusa Takao¹, Maasa Yokomori¹, Miho Tagawa², Shigeo S. Sugano³, Shinya Sakuma¹, and Yoko Yamanishi¹¹*Kyushu University, JAPAN, ²Nagoya University, JAPAN, and*³*National Institute of Advanced Industrial Science and Technology (AIST), JAPAN*

M110.c LMOI: A NOVEL EVAPORATION TUNABLE MICROREACTOR PLATFORM

Rutvik Lathia, Satchit Nagpal, Chandantaru D. Modak, Bheema Reddy, and Prosenjit Sen Indian Institute of Science, INDIA

M111.c OIL-INFUSED SIEVE-BASED TRAPPING SYSTEM FOR VERSATILE 3D CELL CULTURE AND BIOCHEMICAL APPLICATIONS

Bheema S. Reddy, Rutvik Lathia, Chandantaru D. Modak, Satyarthi Mishra, Ramray Bhat, and Prosenjit Sen Indian Institute of Science. INDIA

CONTROLLED ATPS DROPLET FORMATION AND CAPTURE T106 c USING MICROFLUIDICS

Hailin Fu, Chris Li, Tongsheng Wang, Kalpit Bakal, Jaap M. J. den Toonder, Bert E. W. Meijer, and Hans M. Wyss

TU Eindhoven, NETHERLANDS

DROPLET MICROFLUIDIC BASED FABRICATION OF SOFT T107.c MICROROBOTS WITH TAILORED MAGNETIC ANISOTROPY

Chao Song, Yimo Yan, Michael G. Christiansen, Stavros Stavrakis, Simone Schürle, and Andrew deMello ETH Zürich, SWITZERLAND

T108.c FABRICATION OF CRESCENT-SHAPED PARTICLES FOR PARTICLE-TEMPLATED DROPLET FORMATION

Yimin Yang and Ghulam Destgeer Technical University of Munich, GERMANY

T109.c IMPROVING THE EFFICIENCY OF DROPLET COMPARTMENTALIZATION BY DOUBLE

EMULSIONS FOR CRISPR-BASED

NUCLEIC ACID DETECTION

Yang Zhang and Ming Li

Macquarie University, AUSTRALIA

MICROFLUIDIC DEVICES FOR THE GENERATION OF MONODISPERSE. T110.c SUBMICROMETER, SELF-ASSEMBLED SUPERPARTICLES

Tanner W. Young, Baixu Zhu, Xingchen Ye, and Stephen C. Jacobson Indiana University, USA

ON CHIP SHEATH FLOW INDUCED MICROPARTICLE ENCAPSULATION T111.c IN SPIRAL CHANNELS

Byeong-Ui Moon¹, Lidija Malic¹, Dillon Da Fonte¹, Liviu Clime¹, Félix Lussier², Luke Lukic¹, David Juncker², and Teodor Veres¹ ¹National Research Council Canada, CANADA and ²McGill University, CANADA

W105.c AN ASYMMETRIC CROSS-JUNCTION MICROFLUIDIC DEVICE FOR SYNTHESIS OF ANISOTROPIC MAGNETIC JANUS PARTICLES IN A MICROFLUIDIC DEVICE

Muhammad Sagib and Emine Yegan Erdem Bilkent University, TURKEY

FABRICATION OF SYNTHETIC POLYMER FOAMS AND GRADIENT W108.c STRUCTURES VIA MICROFLUIDICS FOR ENERGY ABSORPTION APPLICATIONS

Abhishek Viswanath and Marco Costantini Polish Academy of Sciences, POLAND

W109.c LENGTH-CODED AMPHIPHILIC PARTICLES FOR THE ENCAPSULATION OF A WIDE RANGE OF DROPLET VOLUMES

Muhammad Usman Akhtar, Mehmet Akif Sahin, Helen Werner, and Ghulam Destgeer

Technical University of Munich, GERMANY

W110.c MONITORING PANCREATIC α -AMYLASE OF POSTOPERATIVE PATIENTS WITH DROPLET-BASED MICROFLUIDICS

Xinne Zhao¹, Fiona R. Kolbinger², Denys Makarov¹, and Larysa Baraban¹
¹Helmholtz-Zentrum Dresden-Rossendorf e.V., GERMANY and
²Dresden University of Technology, GERMANY

W111.c THE EFFECTS OF DIFFERENTIAL IMPEDANCE SIGNAL ON DROPLET MEASUREMENT

Xun Liu¹, Tao Tang², Yoichiroh Hosokawa¹, and Yaxiaer Yalikun¹

¹Nara Institute of Science and Technology, JAPAN and

²National University of Singapore, SINGAPORE

Electrokinetic Phenomena

M112.c ELECTRO-ROTATION MEASUREMENT SYSTEM FOR AUTOMATIC HIGH-THROUGHPUT DIELECTRIC CHARACTERIZATIONS OF CELLS POPULATIONS

Samuele Moscato^{1,2}, Andrea Ballo^{1,2}, Pasquale Memmolo³, Paolo Bonacci², Nicolò Musso², Stefania Stefani², Ron Pethig², Maide Bucolo², and Massimo Camarda¹ ¹STLab srl, ITALY, ²University of Catania, ITALY, and ³CNR ISASI, ITALY

M113.c MICROFLUIDIC CHIP FOR MULTIMODAL MANIPULATION OF PARTICLES/CELLS BASED ON WAVY FLOATING ELECTRODE

Wenru Dai, Hongfang Yu, and Liang Huang Hefei University of Technology, CHINA

T112.c EVAPORATIVE CRYSTALLIZATION OF SESSILE DROPLETS USING ELECTROWETTING

Qi An¹, Pingping Cui^{1,2}, Bijoy Bera¹, Massimo Mastrangeli¹, Johan T. Padding¹, and Burak Eral¹ ¹TU Delft, NETHERLANDS and ²Tianjin University, CHINA

T113.c OSTE-BASED MICROFLUIDIC CHIP FOR PEF TREATMENT OF MAMMALIAN CELLS

Neringa Bakute¹, Eivydas Andriukonis¹, Kamile Kasperaviciute¹, Elinga Brazionyte¹, Jorunas Dobilas¹, Vilius Vertelis¹, Skirmantas Kersulis¹, Gatis Mozolevskis², Arunas Stirke^{1,2} ¹ State Research Institute Physical and Technological Sciences Center (FTMC), LITHUANIA and ²University of Latvia, LATVIA

W112.c HIGH THROUGHPUT AND SCALABLE PRECONCENTRATION OF CHARGED ANALYTES BASED ON ION CONCENTRATION POLARIZATION ON A PACKED BED OF MICROBEADS

Umesha Peramune, Zisun Ahmed, Suriya Dhakshinamoorthy, Mehdi Shadkhah, Baskar Ganapathysubramanian, and Robbyn K. Anand *Iowa State University, USA*

W113.c STUDY OF AC ELECTROTHERMAL MICRO FLOWS TO ENHANCE BIOCHEMICAL DETECTION

Léna Gonzalez¹, Laurent Davoust², and Jena-Maxime Roux¹

1 CEA Leti, FRANCE and 2 CNRS, FRANCE

Modeling/Numerical Simulation

M114.c ACCELERATING CFD SIMULATIONS OF MICROFLUIDIC DEVICES BY EXPLOITING HIGHER LEVELS OF ABSTRACTIONS

Michel Takken1 and Robert Wille1,2

¹Technical University of Munich, GERMANY and

²Software Comptence Center Hagenberg SCCH, AUSTRIA

M115.c NUMERICAL CHARACTERIZATION OF COMPLIANCE OF THICK PDMS MICROCHANNELS

Mohammed Elmahdi Elgack, Omar Ghannam, and Mohamed Abdelgawad American University of Sharjah, UAE

T114.c EFFECT OF JUNCTION ANGLE ON PARTICLE ENCAPSULATION IN DROPLET MICROFLUIDICS

Maryam Fatehifar, Alessandro De Rosis, and Alistair Revell University of Manchester, UK

T115.c OPTIMIZATION OF MICROCHANNEL GEOMETRY FOR IMPROVING SENSITIVITY ON PARTICLE/CELL IMPEDANCE MEASUREMENT

Yuanyuan Guo and Liang Huang Hefei University of Technology, CHINA

W114.c ENHANCING MASS TRANSFER EFFICIENCY VIA INTERNAL FLUID VORTEX IN DIFFERENT HELIX CONFIGURATIONS

Pin-Ru Huang¹, Guan-Yu Lu¹, Po-Yao Syu¹, Wei-Hsin Tien², Yi-Hsin Chien³, Wei-Hsiang Wang¹, and Ya-Yu Chiang^{1,4}

¹ National Chung Hsing University, TAIWAN, ² National Taiwan University of Science and Technology, TAIWAN, ³Feng Chia University, TAIWAN, and ⁴ National Taiwan University, TAIWAN

W115.c THE VIBRATION-INDUCED CHAOTIC MIXING WITH SWITCHING OF VIBRATIONS AXES

Kanji Kaneko^{1,2}, Yosuke Hasegawa³, Takeshi Hayakawa¹, and Hiroaki Suzuki¹

¹Chuo University, JAPAN, ²Japan Society for the Promotion of Science (JSPS), JAPAN, and ³University of Tokyo, JAPAN

Nanofluidics/Nanofluidic Phenomena

M116.c CO-FLOW OF NEWTONIAN AND VISCOELASTIC FLUIDS FOR BACTERIA SEPARATION BY SIZE IN A MICROCHANNEL

Tianlong Zhang^{1,2}, Yaxiaer Yalikun², Yoichiroh Hosokawa², and Ming Li¹

**Macquarie University. AUSTRALIA and

²Nara Institute of Science and Technology, JAPAN

M117.c NANOFLUIDIC DEVICE WITH POSITIVELY CHARGED CHANNEL SURFACES IMITATE INHIBITORY SYNAPTIC FUNCTION

Peiyue Li¹, Pan Zhang¹, Han Xu¹, Yechang Guo¹, Shaofeng Wang³, Yufeng Jin¹, and Wei Wang^{1,2}

¹Peking University, CHINA, ²National Key Laboratory of Science and Technology on Micro/Nano Fabrication, CHINA, and ³China University of Geosciences, CHINA

M118.c ON-DEMAND 3D NANOCONFINEMENT IN BEAD-ARRAY MICROFLUIDIC CHIPS VIA CONTROLLABLE PDMS COLLAPSE FOR EFFICIENT BIOREACTION

Jui-Hong Weng¹, Deng-Kai Yang¹, Abdullah-Bin Siddique², Nathan Swami², and Chia-Fu Chou¹

¹Academia Sinica, TAIWAN and ²University of Virginia, USA

T116.c ENHANCED DNA MIXING WITH VISCOELASTIC WAVES

Enrico Turato, Jason P. Beech, and Jonas O. Tegenfeldt *Lund University, SWEDEN*

T117.c NANOFLUIDIC ELECTROKINETIC TRANSPORT ACROSS MULTIPLE NANOCHANNELS MONITORED IN REAL TIME

Nattapong Chantipmanee¹, Taichi Nakajima², Sasikarn Seetasang^{2,3}, and Yan Xu^{1,2,4}

¹ Osaka Metropolitan University, JAPAN, ² Osaka Prefecture University, JAPAN, ³ National Nanotechnology Center (NANOTEC), THAILAND, and ⁴ Japan Science and Technology Agency (JST), JAPAN

T118.c THE EFFECT OF CONFINEMENT ON FLOW GENERATION BY ARTIFICIAL CILIA

Yiqing Sun, Ye Wang, and Jaap den Toonder Eindhoven University of Technology, NETHERLANDS

W116.c GATE-CONTROLLED NANOFLUIDIC MEMORY DEVICES MIMIC EXCITATORY SYNAPTIC AND INHIBITORY SYNAPTIC FUNCTIONS

Pan Zhang¹, Peiyue Li¹, Han Xu¹, Yechang Guo¹, Shaofeng Wang³, Yufeng Jin¹, and Wei Wang^{1,2}

¹Peking University, CHINA, ²National Key Laboratory of Science and Technology on Micro/Nano Fabrication, CHINA, and ³China University of Geosciences. CHINA

W117.c NANOFLUIDIC EVALUATION OF INDIVIDUAL NANOGEL-BASED MOLECULAR SYSTEMS

Yusuke Dote¹, Xuejin Huang², Madoka Takai², Nattapong Chantipmanee¹, and Yan Xu¹ ¹ Osaka Metropolitan University, JAPAN and ² Tokyo University, JAPAN

W118.c WETTABILITY INSPIRED MODIFICATION OF MEMBRANES FOR IMPROVED DESALINATION

Vinay Arya and Chirodeep Bakli Indian institute of Technology, Kharagpur, INDIA

Others

T119.C LONG-TERM OPERATION OF SPRING-BASED SYRINGE PUMP THROUGH THE SEQUENTIAL OPERATION OF THE

CLOCKWORK MECHANISM
Won Han, Se Been Park, and Joong Ho Shin

Pukyong National University, KOREA

W119.c ROOM TEMPERATURE QUANTITATIVE LIQUID CONCENTRATION INTERFACE

Hidekatsu Tazawa¹ and Kazuma Mawatari² ¹*University of Tokyo, JAPAN and* ²*Waseda University, JAPAN*

d - Integrated Microfluidic Platforms

Chemical & Particle Synthesis

M120.d A DROPLET MICROFLUIDIC DEVICE FOR RAPID IN-SITU POLYMERIZATION OF SUPERABSORBENT POLYMER MICROPARTICLES (SAP-MPS)

Ehsan Tabesh, John Brown, Alireza Zabihihesari, Siu Ning (Sunny) Leung, and Pouya Rezai *York University, CANADA*

M121.d RAIL-AIDED LATERAL PARTICLE TRANSPORT ACROSS INTACT CO-FLOWS: EFFECT OF WALLS AND RAIL GEOMETRY

Vyacheslav R. Misko, Iwona Ziemecka, Amaury de Hemptinne, Matthieu Briet, Pierre Gelin, Ilyesse Bihi, Dominique Maes, and Wim De Malsche Vrije Universiteit Brussel (VUB), BELGIUM

T120.d A NOVEL MICROFLUIDIC REACTOR ARCHITECTURE FOR RAPID DNA SYNTHESIS

Naghmeh Fatemi, Ahmed Taher, Jelle Fondu, Hamideh Jafarpoorchekab, Kherim Willems, Olivier Henry, Peter Peumans, Tim Stakenborg, and Ben Jones imec, BELGIUM

T121.d TUNABLE SYNTHESIS OF BRANCHED GOLD NANOPARTICLES IN MICROFLUIDIC DEVICE FOR LARGE BIOMOLECULAR DELIVERY

Kavitha Illath¹, Hima Manoj¹, Ashwini Shinde¹, Moeto Nagai², and Tuhin S. Santra¹

¹Indian Institute of Technology, Madras, INDIA and ²Toyohashi University of Technology, JAPAN

W120.d RAIL INDUCED PARTICLE MULTILAYER COATING

Amaury A. de Hemptinne, Iwona I. Ziemecka, Vyacheslav R.V.R. Misko, Matthieu M. Briet, Pierre P. Gelin, Ilyesse I. Bihi, Dominique D. Maes, and Wim W. De Malsche Vrije Universiteit Brussel (VUB), BELGIUM

W121.d ULTRA-HIGH THROUGHPUT MICROFLUIDIC PHOTOCATALYTIC SYNTHESIS AND SCREENING UP TO 10,000 REACTIONS PER DAY

Jia-Min Lu Zhejiang University, CHINA

Eletrophoretic & Chromatographic Separation

M122.d ELECTROPHORETIC QUALITY ASSESSMENT OF ADENO-ASSOCIATED VIRUS (AAV) BY MICROFLUIDIC ION CONCENTRATION POLARIZATION

Yejin Park^{1,2}, Mingyang Cui², Jinsik Kim¹, and Jongyoon Han²

¹ Dongguk University, KOREA and

²Massachusetts Institute of Technology, USA

M123.d HIGH-THROUGHPUT ELECTROKINETIC FILTER FOR CHO MEDIA REGENERATION

Eric M. Wynne, Dohyun Park, Mingyang Cui, and Jongyoon Han Massachusetts Institute of Technology, USA

T122.d EXPLORING THE POTENTIAL OF VORTEX LIQUID CHROMATOGRAPHY

Pierre Gelin¹, Ilyesse Bihi¹, Levi Ezechukwu¹, Elahe Naghdi¹, Eiko Westerbeek¹², Wouter Olthuis², Jan Eijkel², and Wim De Malsche¹ ¹ Vrije Universiteit Brussel (VUB), BELGIUM and ² Twente University, NETHERLANDS

T123.d MINIATURIZED EXTRACTION DEVICE COUPLED TO MASS SPECTROMETRY FOR ON-LINE PURIFICATION AND CHARACTERIZATION OF NUCLEAR SAMPLES

Marine Boudias¹, Erwan Dupuis¹, Alexandre Quémet², and Carole Bresson¹

1 Université Paris-Saclay, FRANCE and ²CEA, FRANCE

T124.d POINT-OF-CARE TESTING (POCT) OF THALASSEMIA ON ISOELECTRIC FOCUSING (IEF) CHIP/PLATFORM

Kay Khine Maw, Wei Wang, and Zhiping Wang Agency for Science, Technology and Research (A*STAR), SINGAPORE

W122.d FEMI-GC: A MICRO GAS CHROMATOGRAPHY SYSTEM WITH FLUIDIC AND ELECTRICAL MODULAR INTERFACING

Nipun Thamatam, Mustahsin Chowdhury, and Masoud Agah Virginia Polytechnic and State University, USA

W123.d NANOSPRAY EMITTERS: MICROFABRICATED ELECTROSPRAY INTERFACES (ESI) WITH A LIQUID JUNCTION FOR SENSITIVE BIONANALYSES

Elizaveta Vereshchagina¹, Tomáš Václavek², Anand Summanwar¹, Sigurd Moe¹, Leny Nazareno¹, Aina K. Herbjørnrød¹, Guido Sordo¹, Anna Nordborg³, Andreas Vogl¹, Franta Foret², and Roman Řemínek² ¹SINTEF Digital, NORWAY, ²Czech Academy of Sciences, CZECH REPUBLIC, and ³SINTEF Industry, NORWAY

Micromixers & Microreactors

M125.d CHARACTERIZATION OF A MICROFLUIDIC MIXING PROBE (MMP)

Dima S. Ali, Ayoub Glia, Muhammedin Deliorman, and Mohammad Qasaimeh New York University, Abu Dhabi, USA

M126.d HYDRODYNAMIC ENHANCEMENT OF AGGLUTINATION-BASED NANOPARTICLE DETECTION DRIVEN BY THE VIBRATION-INDUCED FLOW

Kanji Kaneko^{1,2}, Mamiko Tsugane¹, Yosuke Hasegawa³, Takeshi Hayakawa¹, and Hiroaki Suzuki¹ ¹Chuo University, JAPAN, ²Japan Society for the Promotion of Science (JSPS), JAPAN, and ³University of Tokyo, JAPAN

M127.d MICROFLUIDIC-ASSISTED DIGITAL MANUFACTURING OF FUNCTIONALLY GRADED POROUS MATERIALS WITH TRANSIENT PHYSICAL AND BIOLOGICAL PROPERTIES

Maria Celeste Tirelli¹, Francesco Nalin¹, Nehar Celikkin¹, Andrea Curatolo², Piotr Kasprzycki², Karol Karnowski², and Marco Costantini¹

¹Polish Academy of Sciences, POLAND and

²International Center for Translational Eye Research, POLAND

M128.d SIMULATIONS AND ANALYSIS OF PROGRAMMABLE LIQUID METAL DROPLET ARRAY PLATFORM FOR GENERATING RECONFIGURABLE FLOW FIELD

Xu Gao, Shitao Shen, and Wei Wang Peking University, CHINA

T125.d DEVELOPMENT OF MICROWAVE MICROFLUIDICS WITH PARALLEL HEATING USING POST-WALL WAVEGUIDE FOR COMBINATORIAL SYNTHESIS

Kaito Fujitani¹, Hiroshi Nakamura¹, Akinobu Yamaguchi¹, Mitsuyoshi Kishihara², and Yuichi Utsumi¹ ¹ University of Hyogo, JAPAN and ² Okayama Prefectural University, JAPAN

T126.d MICROBIAL STIR BARS: LIGHT-ACTIVATED ROTATION OF TETHERED BACTERIAL CELLS TO ENHANCE MIXING IN STAGNANT FLUIDS

Jyoti P. Gurung¹, Moein N. Kashani^{2,3}, Charitha M.D.E. Silva¹, and Matthew A.B. Baker^{1,4}

¹University of New South Wales, AUSTRALIA, ²University of South Australia, AUSTRALIA, ³Australian National Fabrication Facility, AUSTRALIA, and ⁴ARC centre of Excellence in Synthetic Biology, AUSTRALIA

T127.d PNEUMATIC VALVE-BASED MICROFLUIDIC DEVICE FOR THE DETECTION OF HEPO GENE

Hyewon Yun and Chang-Soo Lee Chungnam National University, KOREA

W124.d AN INTEGRATED, AUTOMATED MICROFLUIDIC INSTRUMENT FOR COMPLEX BIOLOGICAL MICROREACTIONS

Greg Liddiard, Bahar Kazemi, Munawar Jawad, Chris Lambert, Sabin Nepal, and Bruce Gale University of Utah, USA

W125.d ELECTRO-GUIDED MICRO-VESSELS WITH DUAL MOTION

Annaël Sort-Montenegro, Luke Dowling, Colm Delaney, and Larisa Florea Trinity College Dublin, IRELAND

W126.d MICROFLUIDIC ULTRAFAST MIXER FOR CONTINUOUS AND SCALABLE PRODUCTION OF DRUG DELIVERY NANOPARTICLES

Dong-Pyo Kim, Gi-Su Na, Jeong-Un Joo, and Byung Kwon Kaang Pohang University of Science and Technology (POSTECH), KOREA

W127.d POLYDIMETHYLSILOXANE-FREE MICROFLUIDIC TECHNOLOGY FOR THE RAPID CAPTURE OF EXTRACELLULAR VESICLES FROM URINE

Janis Cipa^{1,2}, Edgars Endzelins², Roberts Rimsa¹, Arturs Abols^{1,2}, Aija Line², and Gatis Mozolevskis¹

¹ Cellboxlab Ltd, LATVIA and ² University of Latvia, LATVIA

Mimicking Acutators (Muscles, Nanorobots)

M129.d MULTI-POLAR ELECTRODE DEVICE FOR SELECTIVE STIMULATION OF THREE-DIMENSIONAL CULTURED SKELETAL MUSCLE TISSUE

Hirone Yamada¹, Yuya Morimoto², Byeongwook Jo¹, Minghao Nie¹, and Shoji Takeuchi¹

¹University of Tokyo, JAPAN and ²Waseda University, JAPAN

T128.d A MICROFLUIDIC DOCKING ASSEMBLED ROTATIONAL ACTUATOR DRIVEN BY BIOMOLECULAR MOTORS

Masakiyo Takahashi¹, Yingzhe Wang¹, Takahiro Nitta², Yuichi Hiratsuka³, and Keisuke Morishima¹

¹ Osaka University, JAPAN, ² Gifu University, JAPAN, and ³ Japan Advanced Institute of Science and Technology (JAIST), JAPAN

W128.d MICROFLUIDIC SOFT ROBOTS BASED ON TEXTILE TECHNOLOGIES FOR ENDOSCOPY AND MICROMANIPULATION

Vivian Aubert¹, Anissa Kaddouche¹, Clara Brouaux¹, Raphael Leurond¹, Chloé Visbecq², Quentin Watel², Aurelie Cayla², Fabien Salaün², Francois Boussu², and Jean-Louis Viovy¹

*Institut Curie, FRANCE and *2University Lille, FRANCE*

Particle Separation

M130.d DESIGN OF A MICROFLUIDIC DEVICE FOR MICROPARTICLE COLLECTION THROUGH ELECTROSTATIC ATTRACTION AND REPULSION

Yuki Ito, Kota Suzuki, Keiichiro Yoshida, and Sho Yokoyama Osaka Institute of Technology, JAPAN

M131.d ECHOGRID: A NOVEL ACOUSTOFLUIDIC, HIGH-THROUGHPUT PLATFORM FOR ENVIRONMENTAL MICROPLASTIC ENRICHMENT

Martim Costa, Liesbeth van der Geer, Björn Hammarström, Selim Tanriverdi, Håkan Jönsson, Martin Wiklund, and Aman Russom KTH Royal Institute of Technology, SWEDEN

M132.d MICROFLUIDIC DEVICE WITH 3D SELF-ASSEMBLED LIQUID METAL ELECTRODES FOR DIELECTROPHORETIC FRACTIONATION OF LARGE-SIZE-RANGE PARTICLES

Huichao Chai, Junwen Zhu, Yongxiang Feng, and Wenhui Wang Tsinghua University, CHINA

M133.d SIZE-BASED SEPARATION OF MULTI-TARGET USING AN ALL GLASS MICROFLUIDIC DEVICE WITH DEFORMABLE CHANNEL

Doudou Ma^{1,2,3}, Yalikun Yaxiaer^{2,3}, Nobutoshi Ota², Yuri Ito², and Koki Yamamoto²

¹ Oaka University, JAPAN, ² Center for Biosystems Dynamics Research, JAPAN, and ³ Nara Institute of Science and Technology, JAPAN

T129.d AUTOMATED DROPLETS SCREENING SYSTEM USING A MICROFLUIDIC DEVICE INTEGRATING PNEUMATIC MICROVALVES

Jo Han He, Yi Ting Hsiau, Jing Tang Yang, and Suz I Yeh National Cheng Kung University, TAIWAN

T130.d DEVELOPMENT OF HIGH-THROUGHPUT CIRCULATING TUMOR CELLS SEPARATION DEVICE BASED ON 3D HYDRODYNAMIC FILTRATION

Taiga Ajiri, Hiroyuki Obinata, Natsuki Maeda, and Kentaro Shirai Sysmex Corporation, JAPAN

T131.d HIGH-THROUGHPUT FLUORESCENCE-ACTIVATED SINGLE EXTRACELLULAR VESICLE SORTER

Yoshiyuki Tsuyama¹, Kenji Hinode², Yusuke Yoshioka¹, and Sadao Ota² ¹*Tokyo Medical University, JAPAN and ²University of Tokyo, JAPAN*

T132.d PRESSURE-DEPENDENT SORTING OF GROUP A STREPTOCOCCUS BY DETERMINISTIC LATERAL DISPLACEMENT: AN EXAMPLE OF SORTING A HETEROGENOUS SAMPLE BY A PASSIVE MICROFLUIDIC METHOD

Elham Akbari, Sebastian Wrighton, Jason P. Beech, Pontus Nordenfelt, and Jonas O. Tegenfeldt Lund University, SWEDEN

W129.d CAPILLARITY ENABLED LARGE-ARRAY 3D LIQUID METAL ELECTRODES FOR COMPACT DIELECTROPHORETIC MICROFLUIDICS

Huichao Chai, Yongxiang Feng, Junwen Zhu, and Wenhui Wang Tsinghua University, CHINA

W130.d DEVELOPMENT OF PARTICLE SEPARATION AND CONCENTRATION MICROFLUIDIC DEVICE FOR DIAGNOSIS OF PERITONEAL DIALYSIS PERITONITIS

Ye Sung Lee, Sung Hoon Bae, Alexander Zhbanov, and Sung Yang Gwangju Institute of Science and Technology (GIST), KOREA

W131.d MICRO/NANOPARTICLE SEPARATION VIA RADIAL TEMPERATURE GRADIENT IN THREE-DIMENSIONAL SPIRAL MICROCHANNELS

Junho Kim, Kyunghoon Lee, and Taesung Kim
Ulsan National Institute of Science and Technology (UNIST), KOREA

W132.d SEPARATION OF TWO BACTERIAL SPECIES USING VISCOELASTIC FLOWS

Tianlong Zhang^{1,2}, Li Ming¹, Yaxiaer Yalikun², and Yoichiroh Hosokawa²

¹Macquarie University, AUSTRALIA and ²Nara Institute of Science and Technology, JAPAN

Others

M134.d CONTINUOUS BIODIESEL PRODUCTION PROCESS AND SYSTEM OPTIMIZATION

Pin-Ru Huang¹, Cheng-Yu Wang¹, Hsiang-Yu Yang¹, Bo-Chuan Hsueh¹, Faisal Maqbool¹, Yu-Chieh Chen¹.³, Yi-Hsin Chien², and Ya-Yu Chiang¹.³ ¹ National Chung Hsing University, TAIWAN, ² Feng Chia University, TAIWAN, and ³ National Taiwan University, TAIWAN

M135.d MICROFLUIDIC PRODUCTION OF [18F]ALF-PSMA-11 RADIOPHARMACEUTICAL

Olga Ovdiichuk¹, Laurent Tanguy², and Charlotte Collet^{1,3}

¹ Nancyclotep, FRANCE, ² PMB-Alcen, FRANCE, and

³ Université de Lorraine, FRANCE

T133.d CHARACTERIZING ACOUSTIC BEHAVIOR OF SILICON MICROCHANNELS SEPARATED BY POROUS WALLS

Mehrnaz Hashemiesfahan^{1,2}, Pierre Gelin¹, Jo W. Christiaens¹, Han Gardeniers², and Wim De Malsche¹

¹Vrije Universiteit Brussel (VUB), BELGIUM and ²University of Twente, NETHERLANDS

T134.d IN-SITU ENZYMATIC ACTIVITY MONITORING PLATFORM USING FOIL-BASED DISPOSABLE MICROFLUIDIC CHIPS

Alvaro J. Conde¹, Veronica Mora Sanz², Elisabeth Hengge³, Jihye Jung³, Bernd Nidetzky³, Matija Strbac², Nerea Briz Iceta², Andoni Rodriguez⁴, Pakapreud Khumwan⁵, Conor O'Sullivan⁶, Nastasia Okulova⁶, and Maciej Skolimowski¹

¹Micronit BV, NETHERLANDS, ²Tecnalia-BRTA, SPAIN, ³Graz University of Technology, AUSTRIA, ⁴Bionic Surface Technologies GmbH, AUSTRIA, ⁵Joanneum Research, AUSTRIA, and ⁶Inmold AS, DENMARK

W133.d COAXIAL DUAL-ION SOURCE UTILIZING CHIP-BASED MICRO RF PLASMA AND ELECTROSPRAY IONIZATIONS FOR MASS SPECTROMETRY DETECTING OF ALL-POLARITIES SAMPLES

Yi Chi Liu and Che Hsin Lin National Sun Yat-sen University, TAIWAN

W134.d INDEPENDENT UNIT OPERATION OF SERIALLY AND PARALLELLY INTERCONNECTED MULTIPLE MICROFLUIDIC DEVICES USING CLAPMED PRESSURES

Kao-Mai Shen¹, Chihchen Chen¹, Kyojiro Morikawa^{1,2,3}, and Takehiko Kitamori^{1,2,3,4}

¹National Tsing Hua University, TAIWAN, ²University of Tokyo, JAPAN,

³Kanagawa Institute of Industrial Science and Technology, JAPAN, and ⁴Lund University. SWEDEN

e - Micro- and Nanoengineering

Bonding, Sealing & Interfacing Technologies

M136.e IRREVERSIBLE PDMS BONDING USING FLAME ACTIVATION OF ADHESIVES FOR FABRICATION OF ORGAN-ON-CHIP DEVICES

Mohammadhossein Dabaghi, Ryan Singer, and Jeremy Hirota McMaster University, CANADA

T135.e CLEAN-ROOM FREE FABRICATION OF HYBRID GLASS CHIP FOR PRECISE OXYGEN CONTROL

Charlotte Bouquerel^{1,2}, Simon Dumas¹, Elias Abedelnour³, Ester Simkova¹, Guillem Wetherell Mateu¹, Linda Meddahi¹, Bertrand Cinquin⁴, Giacomo Gropplero¹, Michael Tatoulian³, Maria Carla Parrini¹, William Cesar², and Stephanie Descroix¹

¹Institut Curie, FRANCE, ²Fluigent, FRANCE, ³PSL University, FRANCE, and ⁴Institut Pierre Gilles de Gennes, FRANCE

T136.e SEMI-AUTOMATED FABRICATION METHOD OF A HYDROGEL-BASED MICROFLUIDIC CHIP FOR CELL CULTURE

Pouya Mehrdel, Christophe Vedrine, and Gabriele Pitingolo Biaoster, FRANCE

W135.e INTEGRATION OF GAAS-BASED LATERAL FIELD EXCITATION (LFE) SENSOR WITH PDMS MICROFLUIDIC CHANNEL: SIMULATION AND EXPERIMENTAL VALIDATION

Muhammad Hamidullah, Franck Chollet, and Thérèse Leblois University Bourgogne Franche-Comté, FRANCE

W136.e THE STUDY OF IRREVERSIBLE INTEGRATION OF POROUS PLASTIC MEMBRANES IN A POLY(DIMETHYLSILOXANE) MICROFLUIDIC SYSTEM FOR 3D CELL CULTURE

Magdalena Flont, Krzysztof Mrozik, and Elżbieta Jastrzębska Warsaw University of Technology, POLAND

Micropumps, Valves and Dispensers

M137.e A FULLY AUTOMATED PORTABLE PERFUSION SYSTEM FOR LIQUID DOSING, CELL INCUBATION AND MONITORING

Katarzyna Tokarska, Kamil Zukowski, and Zbigniew Brzózka Warsaw University of Technology, POLAND

M138.e CHARACTERIZATION OF THE FLOW PROFILE IN PUSHBUTTON-ACTIVATED MICROFLUIDIC DEVICES

Dong Hyun Han, Gihyun Lee, Untaek Oh, and Je-kyun Park Korea Advanced Institute of Science and Technology (KAIST), KOREA

M139.e HIGH-RIGIDITY ON-CHIP MEMBRANE PUMP FOR HIGH-SPEED PICOLITRE PIPETTE

Nariaki Kiyama¹, Makoto Saito¹, Yoshitaka Shirasaki², Yoko Yamanishi¹, and Shinya Sakuma¹ ¹ Kyushu University, JAPAN and ² University of Tokyo, JAPAN

M140.e NUMERICAL SIMULATIONS OF POLYDIMETHYLSILOXANE (PDMS) PUMPS FOR MICROFLUIDICS APPLICATIONS

Pablo E. Guevara-Pantoja, Fernando Benito-López, and Lourdes Basabe-Desmonts University of the Basque Country, SPAIN

T137.e A LOW-COST MICROFLUIDIC SENSOR WITH GLASSY CARBON/GRAPHENE ELECTRODES AND A VALVELESS MICROPUMP FOR HIGHLY SENSITIVE DETECTION OF HEAVY METAL IONS

Peng Zhou, Yingming Xu, Terrence Simon, and Tianhong Cui University of Minnesota, USA

T138.e DUAL MAGNET SOLENOID ACTUATOR FOR PORTABLE MICROFLUIDIC APPLICATIONS

Seo Jun Bae and Do Jin Im Pukyong National University, KOREA

T139.e METACHRONAL MOTION OF MINIATURIZED MAGNETIC ARTIFICIAL CILIA GENERATES MICROFLUIDIC FLOW

Zhiwei Cui, Ye Wang, and Jaap den Toonder Eindhoven University of Technology, NETHERLANDS

T140.e PHOTOACTIVE MICROFLUIDIC PUMPS - BY SPLAY ALIGNED LIQUID CRYSTAL NETWORK ACTUATORS

Christina A. Schmidleithner¹, Yuxin You², Dirk J. Broer², and Johannes R. Peham¹

¹AIT Austrian Institute of Technology, AUSTRIA and
²Technical University of Eindhoven. NETHERLANDS

W137.e A PORTABLE SPRING-POWERED 3D-PRINTED WIND-UP SYRINGE PUMP FOR MICROFLUIDIC APPLICATIONS

Se Been Park and Joong Ho Shin Pukyong National University, KOREA

W138.e FABRICATION OF AN AUTOMATED, NON-ELECTRIC SYRINGE PUMP THAT PUMPS LIQUIDS SEQUENTIALLY USING A SPIRAL SPRING FOR IMMUNOASSAY

Minseon Kim and Joong Ho Shin Pukyung National University, KOREA

W139.e MICROSCALE IN-TUBE CHECK-VALVE

Edwin En-Te Hwu¹, Dali Reda¹, Bilge G. Kyuchuk¹, Tien-Jen Chang¹, Nikolaj Gadegaard², and Anja Boisen¹

1 Technical University of Denmark, DENMARK and
2 University of Glasgow, UK

Microscale Fabrication, Patterning and Integration

M141.e 3-D PRINTED MICRO-OPTOFLUIDIC CHAMBER FOR CELL POPULATION CHARACTERIZATION AND VELOCITY DETECTION

Emanuela Cutuli, Giovanna Stella, Dario Sanalitro, Lorena Saitta, Francesca Guarino, Gianluca Cicala, and Maide Bucolo University of Catania, ITALY

M142.e ACOUSTICALLY LEVITATED STRUCTURAL COLOR VOXELS WITH VARIED ULTRASOUND SENSITIVITY FOR AERIAL DISPLAYS

Hayato Goto, Satoshi Nishita, and Hiroaki Onoe Keio University, JAPAN

M143.e COST-EFFECTIVE LITHO-FREE TECHNIQUE FOR HIGH THROUGHPUT SINGLE CELL TRAPPING AND BIOPRINTING USING WETTABILITY CONTRAST AND SUPERHYDROPHOBIC COPPER SURFACES

Khuushi¹, Sanna Showkat², and Prosenjit Sen¹

Indian Institute of Science, INDIA and

National Institute of Techology, Srinagar, INDIA

M144.e ENGINEERING SUB-10 MICRON CAPILLARY-SCALE MICROVASCULATURE MODELS IN HYDROGEL

Shusei Kawara¹, Brian Cunningham^{1,2}, James Bezer¹, Neelima Kc¹, Jun Ishihara¹, James J. Choi¹, and Sam H. Au^{1,2}

¹Imperial College London, UK and

²Cancer Research UK Convergence Science Centre, UK

M145.e FABRICATION OF PERIODIC SURFACE STRUCTURE ON NANO-ENABLED GRAPHENE OVER KAPTON POLYAMIDE MEMBRANES USING FEMTOSECOND LASER

Suman Chatterjee, Abhijit Cholkar, David Kinahan, and Dermot Brabazon Dublin City University, IRELAND

M146.e FUNCTIONNALITIES INTEGRATION IN 3D-PRINTED MICROFLUIDICS USING A "PRINT-PAUSE-PRINT" STRATEGY

Bastien Venzac¹, Laurent Malaquin¹, Vincent Raimbault¹, Corentin Tregouet³, Elise Bou¹-², Timothée Derkenne³, and Matthieu Sagot¹-² ¹LAAS - CNRS, FRANCE, 2Smartcatch, FRANCE, and ³ESPCI Paris. FRANCE

M147.e IMPROVED SINGLE-SHOT THREE-DIMENSIONAL PRINTING METHOD BY EXPLOITING STEREOGRAPHIC OPTICAL PROXIMITY CORRECTION IN GRAYSCALE LITHOGRAPHY

Jinsik Yoon and Wook Park
Kyung Hee University, KOREA

MICROLFUIDICS FOR HOBBYISTS

Ladislav Derzsi, Yurii Promovych, Shreyas Vasantham, and Piotr Garstecki Polish Academy of Sciences, POLAND

M149.e DESIGN AND DEVELOPMENT OF INTRICATE MICRO-CHANNELS TO IMPROVE MICROFLUIDIC HEAT-SINK PERFORMANCE

Pramod Vishwakarma, Win-Jet Luo, and Bivas Panigrahi National Chin-Yi University of Technology, TAIWAN

M150.e POROUS MEMBRANE-ASSISTED MAGNETIC BEADS METHOD FOR COMPETITIVE IMMUNODETECTION OF VANCOMYCIN

Shaofeng Wang^{1,2}, Yechang Guo¹, Yi Zhang¹, Qingmei Xu¹, Songtao Dou¹, Jiajie Kang², and Wei Wang^{1,3}

¹Peking University, CHINA, ²China University of Geosciences, CHINA, and ³National Key Laboratory of Science and Technology on Micro/Nano Fabrication, CHINA

M151.e SPHEROID FORMATION IN PDMS MICROFLUIDIC DEVICES FABRICATED FROM 3-D PRINTED MOLDS WITH STEEL BALL ARRAYS

Ziya Isiksacan^{1,2}, Rahime Senturk^{1,2,3}, Ismail Bilican⁴, Aslihan Gokaltun^{1,2,5}, and O. Berk Usta^{1,2} ¹Massachusetts General Hospital and Harvard Medical School, USA, ²Shriners Children's Boston, USA, ³Eindhoven University of Technology, NETHERLANDS, 4Aksaray University, TURKEY, and ⁵Hacettepe University, TURKEY

UTILIZATION OF POLY (LACTIC-CO-GLYCOLIC) ACID FOR ON-CHIP M152.e REAGENT ENCAPSULATION IN DISPOSABLE THERMOPLASTIC CHIPS

Jaesung Lee, Evan Benke, Ian M. White, and Don L. DeVoe University of Maryland, USA

4D PRINTING OF SEQUENTIAL-CURING SYSTEM FOR FABRICATION T141.e OF MICROFLUIDIC DEVICES FOR BIOASSAYS

David Böcherer, Yuanyuan Li, Bastian E, Rapp, and Dorothea Helmer University of Freiburg, GERMANY

T142.e AN OPEN-SOURCE MICROFLUIDIC DESIGN AUTOMATION **WORKFLOW FOR 3D PRINTING**

Brady Goenner¹, Scott Temple¹, Sebastian Zapata², Pierre Emmanuel-Gaillardon¹, Gregory Nordin², and Bruce K. Gale1 ¹University of Utah, USA and ²Brigham Young University, USA

T143.e DIRECT WRITING TECHNIQUE FOR COMBINATORIAL SCREENING OF SOLUTION-PROCESSABLE MULTI-MATERIAL FILMS AND COATINGS

Anindya L. Roy and Konrad Walus University of British Columbia, CANADA

T144.e ENHANCEMENT OF IMPEDANCE CYTOMETRY SIGNAL WITH DIMENSION-ADJUSTABLE MICROFLUIDIC CHANNEL

Trisna Julian¹, Tao Tang², Yoichiroh Hosokawa¹, and Yaxiaer Yalikun¹ ¹Nara Institute of Science and Technology, JAPAN and ²National University of Singapore, SINGAPORE

T145.e FABRICATION OF VILLI MICROINTESTINAL STRUCTURES FOR EVALUATION OF INTESTINAL MICROBIOTA

Yota Yamakawa¹, Wataru Iwasaki², and Noritada Kaji¹

¹ Kyushu University, JAPAN and ² National Institute of Advanced Industrial Science and Technology (AIST), JAPAN

T146.e HIGH-RESOLUTION SURFACE REPLICATION OF LIVING ORGANISMS USING AIR-THROUGH-PRECURSOR SUCTION-AUGMENTED REPLICA MOLDING

Seok Joon Mun, Wookyoung Jang, Ji Yeon Eom, Hyeon Ung Kim, and Ki Wan Bong

Korea University, KOREA

T147.e IN-SITU SYNTHESIS AND FLUID FLOW CHARACTERIZATION OF VERTICAL CELL IMPRINTED POLYMER (CIP) BASED MEMBRANES IN MICROCHANNELS FOR FUTURE ELECTROCHEMICAL SENSING APPLICATIONS

Ayobami E. Oseyemi¹, Alireza Zabihihesari¹, Garrett Kraft², and Pouya Rezai¹

¹ York University, CANADA and ² Sixth Wave Innovations Inc., CANADA

T148.e MICROPATTERNED CYCLIC OLEFIN COPOLYMER FOILS FOR ENHANCED CELL GROWTH IN MICROFLUIDICS

Jiří Smejkal¹, Petr Aubrecht¹, Petr Malinský², Marcel Štofik¹, and Jan Malý¹

¹Jan Evangelista Purkyně University in Ústí nad Labem, CZECH REPUBLIC and ²Academy of Sciences of the Czech Republic, CZECH REPUBLIC

T149.e PARALLEL HIGH-THROUGHPUT SINGLE-CELL PRINTING PLATFORM FOR OPTOPORATION MEDIATED LARGE CARGO DELIVERY

Gayathri Rajeswari¹, <mark>Palla</mark>vi Gupta², Moeto Nagai³, Pallab Sinha Mahapatra¹, and Tuhin Subhra Santra¹

1 Indian Institute of Technology, Madras, INDIA,

²CSIR-Central Drug Research Institute (CDRI), INDIA, and

³Toyohashi University of Technology, JAPAN

T150.e RAPID, LOW-COST FABRICATION OF VALVED ELECTRONIC MICROFLUIDICS VIA INKJET-PRINTING AND XUROGRPAHY (MINX)

Kruthika Kikkeri and Joel Voldman Massachusetts Institute of Technology, USA

T151.e STOPPING INERTIAL FLOW WITHIN A MICROFLUIDIC CHANNEL

Mehmet Akif Sahin, Muhammad Usman Akhtar, and Ghulam Destgeer Technical University of Munich, GERMANY

W140.e "AGC-ACE" PROCESS, HIGH-PRECISION AND HIGH-SPEED DEEP MICROFABRICATION TECHNIQUE OF SILICA GLASS USING HYDROGEN FLUORIDE GAS AND CATALYST

Yoshitaka Ono^{1,2}, Kohei Sano¹, and Yasuo Hayashi¹
¹AGC Inc., JAPAN and ²Tokyo University of Science, JAPAN

W141.e A NOVEL METHOD OF CLEANING SLA 3D PRINTED MICROFLUIDIC DEVICES THROUGH CENTRIFUGATION

Kim Nicolau, Vipul Gupta, Fernando Maya Alejandro, and Michael C. Breadmore University of Tasmania, AUSTRALIA

W142.e APPLICATION OF BIOLOGICAL ADHESION MECHANISM TOWARD FLUIDIC SELF-ASSEMBLY

Akira Ito and Hiroaki Suzuki Chuo University, JAPAN

W143.e ELECTROHYDRODYNAMIC JET ASSISTED RAPID PROTOTYPING OF NON-SACRIFICIAL MICROFLUIDIC TEMPLATES: APPLICATION TO SOFT LITHOGRAPHY AND HOT EMBOSSING

Anupam Choubey and Supreet Singh Bahga Indian Institute of Technology, Delhi, INDIA

W144.e FABRICATION OF BIOMIMETIC AND FLAT COLLAGEN SCAFFOLDS CONTAINING EMBEDDEDMICROCHANNELS INSIDE 3D EXTRACELLULAR MATRICES WITH 2D BASEMENT MEMBRANE LININGS

Ali Maghzian, Neda Fakhri, Arezoo Khalili, Terry Sachlos, and Pouya Rezai *York University, CANADA*

TOTA UTIVETSILY, CANADA

W145.e FACILE FABRICATION OF HIERARCHICALLY STRUCTURED SUPERHYDROPHOBIC GLASS SUBSTRATES

Kathryn Pacheco^{1,2} and Don DeVoe^{1,2}

¹ University of Maryland, USA and

² Fischell Institute for Biomedical Devices, USA

W146.e HYBRID PLASMONIC NANOCAVITY MICROCHIP FOR SINGLE EV SERS MOLECULAR PROFILING

Mahsa Jalali, Carolina del Real Mata, Yao Lu, Laura Montermini, Janusz Rak, and Sara Mahshid *McGill University, CANADA*

W147.e MICROCHANNEL FABRICATION WITH SMOOTH SURFACE AND HIGH ETCHING SELECTIVITY ON GLASS SUBSTRATE

Kyojiro Morikawa^{1,2,3}, Po-yin Chen¹, Hai Linh Tran¹, Yutaka Kazoe⁴, Chihchen Chen¹, and Takehiko Kitamori^{1,3,5}

¹ National Tsing Hua University, TAIWAN, ² University of Tokyo, JAPAN, ³ Kanagawa Institute of Industrial Science and Technology, JAPAN, ⁴ Keio University, JAPAN, and ⁵ Lund University, SWEDEN

W148.e NEW MULTI-RESOLUTION 3D PRINTING: 2 µM CHANNELS AND TINY DIFFUSION MIXER IN ONLY 0.017 MM^3 PRINTED VOLUME

Dallin Miner, Matthew Viglione, Kent Hooper, Adam T. Woolley, and Gregory P. Nordin Brigham Young University, USA

W149.e PARYLENE-BASED MICROCHANNELS FOR BRAIN DRUG DELIVERY APPLICATIONS

Feyza Pirim, Akin M. Yılmaz, Ali C. Atik, Haluk Kulah, and Mahmut K. Aslan Middle East Technical University, TURKEY

W150.e SINGLE-CELL TRAPPING AND RELEASING METHOD USING NITROGEN GAS GENERATED FROM LIGHT-RESPONSIVE GAS-GENERATING POLYMER (LGP)

Hidetaka Ueno¹, Yoshinori Akagi², and Shohei Yamamura³

¹Kobe University, JAPAN, ²Sekisui Chemical Co., Ltd., JAPAN, and ³National Institute of Advanced Industrial Science and Technology (AIST), JAPAN

W151.e SUPERHYDROPHILIC/ SUPERHYDROPHOBIC DROPLET MICROARRAYS FOR NUCLEIC ACID DETECTION

Mohammad Awashra¹, Pinja Elomaa², Päivi Saavalainen², and Ville Jokinen¹

¹Aalto University, FINLAND and ²University of Helsinki, FINLAND

Nanoscale Fabrication, Patterning and Integration

M153.e FABRICATION OF HOMOGENEOUS SHELL-ISOLATED SERS SUBSTRATES FOR CATALYTIC APPLICATIONS

Ketki Srivastava¹, Thimo S. Jacobs², Stefan Ostendorp³, Dirk Jonker⁴, Arturo Susarrey Arce⁴, Han Gardeniers⁴, Gerhard Wilde³, Bert M. Weckhuysen², Albert van den Berg¹, Ward van der Stam², and Mathieu Odijk¹

¹University of Twente, NETHERLANDS, ²Utrecht University, NETHERLANDS, ³WWU Münster, GERMANY, and ⁴University of Twente, NETHERLANDS

M154.e HIGH-THROUGHPUT NANOPARTICLE ALIGNMENT AND PATTERNING USING WRINKLE-BASED NANOCHANNEL ARRAY: TOWARD MULTIPLEX BIOSENSORS

Yeonghoon Jeong, Jungyu Park, Minsu Kwon, and Taesung Kim Ulsan National Institute of Science and Technology (UNIST), KOREA

T152.e BUBBLE DEGASSING CHARACTERISTICS VIA NANOSTRUCTURES ON THE SUBSTRATE OF A MICROFLUIDIC DEVICE

Hyewon Kim¹, Hyewon Lim¹, Yejin Nam², Sanghyun Lee², Sangmin Lee², and Hyungmo Kim¹

¹ Gyeongsang National University, KOREA and ² Dongeui University, KOREA

T153.e NANOSCALE LENSES EMBEDDED IN MICROFLUIDIC CHANNELS FOR SIZE-SELECTIVE OPTICAL TRAPPING AND GUIDING OF PARTICLES

Brigham Pope and Stephen Jacobson Indiana University, USA

T154.e TARGETED INSERTION OF DNA NANOPORE INTO GIANT LIPOSOMES

Hiroki Koiwa¹, Shin-ichiro M. Nomura², Satoshi Murata², and Kan Shoji¹ ¹ Nagaoka University of Technology, JAPAN and ² Tohoku University, JAPAN

W152.e ENHANCED BIOMOLECULE SENSING USING NANOWIRE-INTEGRATED PLASTIC LABWARE FABRICATED BY INJECTION MOLDING FOR IMPROVED ANTIBODY DETECTION

Jung Kim, Yujin Jung, Jong-Hwan Lee, Sung Kyun Lee, Nam Hoon Kim, and Hong Gi Kim

Korea Research Institute of Chemical Technology, KOREA

W153.e SELF-ASSEMBLED, HIERARCHAL NANOPATTERNED STRUCTURES TO ENHANCE DURABILITY OF LUBRICANT INFUSED SURFACES

Joowon Lim, Beomsu Kim, Chenrui Li, Geonho Lee, Seokhyun Noh, Junho Oh, and Won Chul Lee Hanyang University, KOREA

New Materials and Surface Modification

M155.e ARTIFICIAL IRIS FOR ENHANCED ANTI-COUNTERFEITING STRATEGIES

Cheolheon Park¹ and Daewon Lee²

¹Seoul National University, KOREA and ²Myongji University, KOREA

M156.e MEMS COMPATIBLE SUBSTRATES FOR CYANOBACTERIA MOTILITY STUDIES IN LOC DEVICES

Lourdes Albina Nirupa Julius¹, Lukas Matter¹, Nils Schuergers², Johannes Lützenkirchen¹, Vanessa Trouillet¹, Teba Gil-Díaz^{1,3}, Emil R. Mamleyev¹, Annegret Wilde², Vlad Badilita¹, and Jan G. Korvink¹ ** Karlsruhe Institute of Technology, GERMANY, ²University of Freiburg, GERMANY, and ³Friedrich Schiller University Jena, GERMANY

M157.e OMNIPHOBIC AND SUBSTRATE-INDEPENDENT SPRAY COATING CONSISTING OF HIERARCHICAL STRUCTURES PREVENTS THE TRANSMISSION OF INFECTIOUS DISEASES ON HIGH-TOUCH SURFACES

Noor Abu Jarad, Kenneth Rachwalski, Fereshteh Bayat, Shadman Khan, Amid Shakeri, Roderick MacLachlan, Martin Villegas, Eric D. Brown, Leyla Soleymani, and Tohid F. Didar McMaster University. CANADA

T155.e HIGH-RESOLUTION 3D IMAGING OF CANCER CELLS INFILTRATING A CYTOP V-GROOVE MICROCHANNEL DIRECTLY WRITTEN BY FS-LASER

Kazunari Ozasa, Kotaro Obata, Hiroyuki Kawano, Atsushi Miyawaki, and Koji Sugioka Institute of Physical and Chemical Research (RIKEN), JAPAN

T156.e NANOFIBERS WITH DIFFERENT PHYSICOCHEMICAL PROPERTIES AS A NEW SUBSTRATE FOR MICRO- AND NANOENGINEERING USED FOR HYPOXIA SIMULATION OF HUMAN CARDIOMYOCYTES

Zuzanna Iwoń¹, Aleksandra Kierlańczyk¹, Ewelina Krogulec², Michał Wojasiński¹, Iwona Łopianiak¹, and Elżbieta Jastrzębska¹ ¹ Warsaw University of Technology, POLAND and ² Nencki Institute of Experimental Biology PAS, POLAND

T157.e OSTEMER AS A MATERIAL SUITABLE FOR BIOLOGICAL MICROFLUIDIC APPLICATIONS

Petr Aubrecht, Jiří Smejkal, Petr Panuška, Klára Španbauerová, Viktorie Neubertová, Jindřich Matoušek, Stanislav Vinopal, Michaela Liegertová, Marcel Štofik, and Jan Malý Jan Evangelista Purkyně University in Ústí nad Labem, CZECH REPUBLIC

W154.e A SCALABLE, MICROFLUIDIC APPROACH FOR FABRICATION OF METER-LONG ALIGNED COLLAGEN SHEET FOR LOAD-BEARING SCAFFOLDS

Samuel V. Lasinski, Lihua Wei, Yuming Zhang, Chantel Campbell, Wuyang Gao, and Axel Guenther University of Toronto, CANADA

W155.e INFLUENCE OF AIR PLASMA TREATMENT ON THE CONTACT ANGLE OF FLEXDYM®

Samuel Wenger, Mattéo Meister, Laure Jeandupeux, Frédéric Flahaut, Jérôme Charmet, and Alexandra Homsy Haute Ecole Arc, SWITZERLAND

W156.e NEW PDMS CROSSLINKING PROCEDURE

Michal Chudy, Elżbieta Jastrzębska, Monika Mehra, and David Madukwe Warsaw University of Technology, POLAND

W157.e TOWARDS ECO-FRIENDLY LAB-ON-A-CHIP WITH BIO-SOURCED POLYMER

Morgane Zimmer 1 , Stephane Trombotto 2 , Anne-Laure Deman 1 , and Emmanuelle Laurenceau 1

¹Université Claude Bernard Lyon 1, FRANCE and

²Ingénierie des Matériaux Polymères, FRANCE

Others

M158.e A METHOD FOR REGULATING THE FATE OF STEM CELLS USING SELF-POWERED DEVICES

Jing Li and Dahai Ren Tsinghua University, CHINA

T158.e ADAPTATION OF OPENROAD FOR MICROFLUIDIC DESIGN AUTOMATION

Brady Goenner¹, Scott Temple¹, Pierre Emmanuel-Gaillardon¹, Gregory Nordin², and Bruce K. Gale¹

1 University of Utah. USA and ²Brigham Young University. USA

f - Sensors and Detection Technologies

Chemical & Electrochemical Sensors

M159.f DEVELOPMENT OF AN ORIGINAL MICROMACHINED FLUIDIC CIRCUIT BOARD FOR A COMPACT MULTIGAS DETECTION SYSTEM EXCLUSIVELY BASED ON MEMS COMPONENTS

Florence Ricoul, Jean-Baptiste Tissot, Raymond Charles, Armelle Keiser, and Nicolas Verplanck University Grenoble Alpes, FRANCE

M160.f EXTRACTION-FREE DETECTION OF LISTERIA MONOCYTOGENES WITH AN ELECTROCHEMICAL LAMP-BASED SENSOR IN FOOD SAMPLES

Ane Rivas Macho¹, Unai Eletxigerra², Ruth Díez-Ahedo², Santos Merino^{2,3}, Felipe Goñi-de-Cerio¹, and Garbiñe Olabarria¹ ¹ GAIKER Technology Center, SPAIN, ² TEKNIKER, SPAIN, and ³ University of the Basque Country, SPAIN

M161.f MICROFLUIDIC BIOSENSOR FOR THE CONTINUOUS ENZYMATIC DETECTION OF ORGANOPHOSPHATE PESTICIDES IN WATER

Julie Lachaux, Celestine Mairaville, Menel Ben Frej, Hervé Volland, Stephanie Simon, and Karla Perez Toralla Paris-Saclay University, FRANCE

M162.f MICROFLUIDIC IMMUNOSENSOR FOR IMMUNE RESPONSE DETECTION OF ANTIBIOTIC RESISTANT BACTERIA AND VACCINES

Ruta Grinyte¹, Pol Monterde¹, Daniel M. Prats¹, David Cecilia¹, Pooya Azizian^{1,2}, and Joan M. Cabot¹

1 Leitat Technological Center, SPAIN and
2 Technical University of Catalonia, SPAIN

M163.f NANODISC-BASED PORTABLE BIOELECTRONIC NOSE FOR MONITORING OF FOOD FRESHNESS IN GAS PHASE

Hyun Seok Song
Korea Institute of Science and Technology, KOREA

PLA/AU MICRONEEDLES-BASED ELECTROCHEMICAL SENSORS FOR INTERSTITIAL FLUID GLUCOSE MONITORING: FACILE FABRICATION AND SUPERIOR PERFORMANCE

Shicheng Zhou, Toshihiro Kasama, Ryo Miyake, and Madoka Takai University of Tokyo, JAPAN

M165.f SMART SENSOR LID FOR MONITORING PH IN MULTIWELL PLATES

Micaela T. Oliveira^{1,2,3}, Luke Marren^{1,4}, Ana S. Martins¹, Lorena Diéguez1, and Alar Ainla1 ¹International Iberian Nanotechnology Laboratory (INL), PORTUGAL, ²University of Minho, PORTUGAL, ³University of Oulu, FINLAND, and 4 Technological University Dublin, IRELAND

T159.f DEVELOPMENT OF ELECTROCHEMICAL DNA SENSOR WITH NANOPORE-BASED DNA EXTRACTION FUNCTION

Haruki Tanabe, Hiromu Akai, and Kan Shoji Nagaoka University of Technology, JAPAN

T160.f INTEGRATION AND RELIABILITY OF THIN FILM ELECTRODES IN MINIATURIZED ELECTROCHEMICAL CELLS

Elizaveta Vereshchagina1, Karolina Kolczyk-Siedlecka2, Zbigniew Szklarz², Aina K. Herbjørnrød¹, Paul Wittendorp¹, Guido Sordo¹, Shruti Jain¹, Chi Hoang¹, Sigurd Moe¹, Anand Summanwar¹, and Pawel Wojcik² 1 SINTEF Digital, NORWAY and

²redoxme AB sp. z o.o. Oddział w Polsce, POLAND

MOLECULARLY IMPRINTED ELECTROCHEMICAL SENSOR BASED ON T162.f THE POLY(O-PHENYLENEDIAMINE-CO-O-AMINOPHENOL) FOR DETECTION OF WHITE SPOT SYNDROME VIRUS VIA VIRAL ENVELOPE PROTEIN VP28

Young-ran Yun Gwangju Institute of Science and Technology (GIST), KOREA

T163.f NANOPORE SENSING FOR NUCLEIC ACID DETECTION AT FEMTOMOLAR LEVELS WITHOUT AMPLIFICATION

Nanami Takeuchi and Ryuji Kawano Tokyo University of Agriculture and Technology, JAPAN

T164.f POINT-OF-CARE MULTIPLEXED ELECTROCHEMICAL BIOSENSOR FOR SALIVARY HEART FAILURE BIOMARKERS

Trey W. Pittman¹, Chuck Henry^{1,4}, Chamindie Punyadeera^{2,3}, Xi Zhang², and Daniel Decsi²

¹Colorado State University, USA, ²Griffith University, AUSTRALIA,

³ Translational Research Institute, AUSTRALIA, and

⁴Chulalongkorn University, THAILAND

W158.f ANALYTICAL DETERMINATION OF TRANSEPITHELIAL ELECTRICAL RESISTANCE FROM ELECTRIC CELL-SUBSTRATE IMPEDANCE SENSING METHOD AS THE DIAMETER OF THE ELECTRODES GOES MICRO

Jose Yeste^{1,2,3,4}, Xavi Illa^{3,4}, Nitesh Shashikanth^{1,2}, Denise Marrero^{3,4}, Anton Guimerà-Brunet^{3,4}, Rosa Villa^{3,4}, and Jerrold R. Turner^{1,2} ¹Brigham and Women's Hospital, USA, ²Harvard Medical School, USA, ³Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), SPAIN. and ⁴Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), SPAIN

W159.f ELECTROCHEMICAL MICROFLUIDIC SENSOR BASED ON CELL IMPRINTED POLYMER-COATED MICROWIRES FOR SELECTIVE RECOGNITION OF BACTERIA IN WATER

Shiva Akhtarian¹, Satinder Kaur Brar¹, Garrett Kraft², and Pouya Rezai¹ ¹ York University, CANADA and ² Sixth Wave Innovations Inc., CANADA

W160.f MICROBIAL COUNTING IN AN ARRAY OF MICROCHAMBERS COMBINED WITH A CHEMICAL IMAGING SENSOR

Ko-ichiro Miyamoto¹, Yohta Horie¹, Ryuju Arai¹, Carl Frederik Werner², and Tatsuo Yoshinobu¹

¹Tohoku University, JAPAN and ²Kyoto Institute of Technology, JAPAN

W161.f MICROFLUIDIC DETERMINATION OF EQUIVALENCE AND ISOELECTRIC POINTS USING 3D-PRINTED FLOW CELL AND OPEN-SOURCE AUTOMATION STRATEGY

Robin Dinter, Lennart Helwes, Stijn De Vries, Henning Jibben, Marcel Pillath, and Norbert Kockmann TU Dortmund University, GERMANY

W162.f NANO-STRUCTURIZED LEAD NEELDES PRODUCED UTILIZING SULFURIC ACID ELECTRO-ETCHING FOR ELECTROCATALYTIC DETECTION OF PIROXICAM IN URINE

Wei-Ren Hou, Dai-En Li, and Che-Hsin Lin National Sun Yat-sen University, TAIWAN

W163.f PAPER-BASED ELECTROCHEMICAL LACTATE SENSOR FABRICATED BY LASER-INDUCED GRAPHENE TECHNIQUE FOR HUMAN SWEAT ANALYSIS

Jinze Chen, Panpan Gao, Toshihiro Kasama, Madoka Takai, and Ryo Miyake *University of Tokyo. JAPAN*

Optical Detection & Imaging

M166.f A HIGH-SENSITIVITY, HIGH Q-FACTOR TERAHERTZ METASURFACE SENSOR BASED ON SURFACE LATTICE RESONANCES FOR BIOCHEMICAL DETECTION

Sun Hongshun, Li Liye, Ma Lijun, Cao Yunhao, Chen Yusa, Xiong Shisong, Yang Bingquan, and Wu Wengang Peking University, CHINA

M167.f ALGINATE/TIO2 BEAD BIOSYSTEM FOR CHOLESTEROL DETERMINATION IN A MICROFLUIDIC DEVICE

Sandra Garcia-Rey¹, Juncal A. Alonso-Cabrera¹, Udara B. Gunalitake¹, Lourdes Basabe-Desmonts^{1,2}, and Fernando Benito-López¹ ¹University of the Basque Country, SPAIN and ²IKERBASQUE, SPAIN

M168.f DEPENDENCE ON MOLECULAR ADSORPTION AND DESORPTION ON THE SERS STRUCTURE USING BOEHMITE

Shunya Saegusa¹, Taku Tanaka¹, Ryota Tanaka¹, Masayuki Naya², Takao Fukuoka¹, Yuichi Utsumi¹, and Akinobu Yamaguchi¹ ¹*University of Hyogo, JAPAN and* ²*Keio University, JAPAN*

M169.f DUAL-FIELD CELL CHARACTERIZATION AND SORTING VIA NEUROMORPHIC-ENABLED IMAGING FLOW CYTOMETRY

Weihua He, Yongxiang Feng, Fei Liang, Junwen Zhu, and Wenhui Wang Tsinghua University, CHINA

M170.f IN-LINE MICRO SPECTROMETER AS THE COLOR AND CONCENTRATION SENSOR WITH A STRUCTURAL COLOR POLYMER

Satoshi Nishita and Hiroaki Onoe Keio University, JAPAN

M171.f NEXT GENERATION IN-SITU SENSING-ON-CHIP (μSOC)

Chayenne W.C. van Dongen¹, Georgia Kontaxi¹, Hanieh Bazyar¹, Behrooz Fereidoonnezhad¹, Nikolas Gaio², and Tawab Karim² ¹Delft University of Technology, NETHERLANDS and ²Bi/ond, NETHERLANDS

M172.f THREAD-BASED OPTICAL BIOSENSOR FOR UREA DETERMINATION

Izabela Lewińska¹, Paweł Bącal², Miguel M. Erenas^{3,4}, Luis Fermín Capitán-Vallvey^{3,4}, and Łukasz Tymecki¹

¹ University of Warsaw, POLAND, ² Polish Academy of Sciences, POLAND, ³ University of Granada, SPAIN, and ⁴ University of Granada, SPAIN

T165.f 3D BIOPRINTED HYDROGEL SENSOR WITH OPTICAL DETECTION TOWARDS RAPID PH-BASED SALIVARY DIAGNOSTICS

Magdalena Łabowska, Agnieszka Krakos (Podwin), and Wojciech Kubicki Wrocław University of Science and Technology, POLAND

T166.f A LABEL-FREE STRATEGY TO CLASSIFY MICROEMBOLUS AND WHITE BLOOD CELLS IN MICRORESERVOIRS USING LENSLESS IMAGING POWERED WITH DEEP LEARNING-BASED ALGORITHMS

Alperay E. Tarim¹, Oyku Doyran¹, Eda Efe¹, Ozden Yalcin-Ozuysal¹, and Cumhur H. Tekin¹.²

¹Izmir Institute of Technology, TURKEY and ²METU MEMS Center, TURKEY

T167.f AN ANGLE-MULTIPLEXED ALL-METAL METASURFACE FOR REFRACTIVE INDEX SENSING BASED ON SURFACE LATTICE RESONANCE

Liye Li and Wengang Wu Peking University, CHINA

T168.f DEVELOPMENT OF A GLOBOTRIAOSYLCERAMIDE (GB3) SUPPORTED LIPID BILAYER (SLB)-FORMED MICROCHIP TO OPTICALLY DETECT SHIGA TOXIN IN FOODS

Jeongtae Kim¹, Keying Li¹, Jeongyun Kim², Moo-Seung Lee³, and Chiwan Koo¹

¹ Hanbat National University, KOREA, ² Dankook University, KOREA, and ³ Korea Research Institute of Bioscience and Biotechnology (KRIBB), KOREA

T169.f EGGSHELL BIOACTIVE MEMBRANE-ASSISTED FABRICATION OF COPPER NANOCLUSTERS AS A VOLATILE AMMONIA-RESPONSIVE FLUORESCENT PROBE FOR EVALUATION OF CHRONIC KIDNEY DISEASE STAGE AT AMBIENT TEMPERATURE

Yi-Hsin Chien, Kuan-Hsiang Yeh, Zheng-Da Du, Wei-Chen Lin, and Yu-Ling Huang

Feng Chia University, TAIWAN

T170.f IONIC LIQUID-BASED DYE NANOEMULSION USING MEROCYANINE DYE: HIGHLY-SENSITIVE AND RAPIDLY-RESPONSIVE ION-SENSING COMPONENT OF HYDROGEL-BASED MICROANALYTICAL DEVICES

Yu Koizumi, Shuto Oka, Kenji Sueyoshi, Tatsuro Endo, and Hideaki Hisamoto Osaka Metropolitan University, JAPAN

T171.f PHYSIOLOGICAL GLUCOSE SENSING IN 3D TUMOUR SPHEROIDS USING SERS BASED NANO PARTICLE SENSORS

Koyel Dey^{1,2}, Venkanagouda S. Goudar¹, Fan Gang Tseng¹, and Tuhin Santra²

¹National Tsing Hua University, TAIWAN and

²Indian Institute of Technology, Madras, INDIA

W165.f 3D PRINTED CELL ENCAPSULATION SYSTEM TOWARDS DRY-RESISTANT YEAST-BASED BIOHYBRID SENSOR

Kazuki Nishimoto, Minghao Nie, and Shoji Takeuchi University of Tokyo, JAPAN

W166.f A SURFACE LATTICE RESONANCE BIOCHEMICAL SENSOR BASED ON A COMPOSITE METAL METASURFACE

Liye Li, Lijun Ma, Yifan Ouyang, and Wengang Wu Peking University, CHINA

W167.f AN OPEN SPACE OPTOFLUIDIC SENSOR BASED ON WHISPERING GALLERY MODE MICROSPHERES FOR VIRUS DETECTION

Bin Guan¹, Tuck-Weng Kok², Nicolas Riesen¹, David G. Lancaster¹, Koukou Suu³, and Craig Priest¹

¹University of South Australia, AUSTRALIA, ²University of Adelaide, AUSTRALIA, and ³ULVAC Inc., JAPAN

W168.f DEVELOPMENT OF SILICON NITRIDE INTEGRATED PHOTONICS PLATFORM FOR BIOSENSING APPLICATIONS

Mateusz Slowikowski, Marcin Juchniewicz, Marcin Lelit, Adrian Duszczyk, Sylwia Karon, Krystian Pavlov, Maciej Filipiak, Bartlomiej Stonio, Bartosz Michalak, Michal Golas, Marcin Mysliwiec, and Piotr Wisniewski Warsaw University of Technology, POLAND

W169.f FLUOROMETRIC DETECTION OF SALMONELLA IN WATER USING CELL IMPRINTED POLYMER THIN FILMS INTEGRATED WITH A MICROFLUIDIC DEVICE

Islam Mahmoud¹, Ali Doostmohammadi¹, Garret Kraft², and Pouya Rezai¹

¹York University, CANADA and ²Sixth Wave Innovations Inc, CANADA

W170.f MICROFLUIDIC ELECTROCHEMICAL SURFACE-ENHANCED RAMAN SCATTERING SENSORS FOR DETECTION OF PESTICIDES IN SURFACE WATERS

Elizaveta Vereshchagina¹, Karolina Milenko¹, Rebeca Moldovan², Aina K. Herbjørnrød¹, Anand Summanwar¹, Guido Sordo¹, Sigurd Moe¹, Firehun Tsige Dullo¹, Cosmin Farcau³, and Ede Bodoki² ¹SINTEF Digital, NORWAY, ²University of Medicine and Pharmacy, ROMANIA, and ³National Institute for Research and Development of Isotopic and Molecular Technologies, ROMANIA

W171.f SELF-ASSEMBLED PHOTOSENSITIVE DNA/SG-I NANOFLOWER-ASSISTED COLORIMETRIC SENSOR FOR DETECTION OF CARCINOEMBRYONIC ANTIGEN

Shan He, Huiting Lian, Xuegong Cao, Bin Liu, and Xiaofeng Wei *Huaqiao University, CHINA*

Physical Sensors

M173.f COULOMETRIC DETECTION OF FLOW RATE IN A MICROCHANNEL USING ON-CHIP MICROELECTRODES

Harsh Deswal¹, Ullas Pandey², Shiv G. Singh², and Amit Agrawal¹ Indian Institute of Technology, Bombay, INDIA and ²Indian Institute of Technology, Hyderabad, INDIA

M174.f FLEXIBLE ULTRA THIN GLASS SHEET CANTILEVER INTEGRATED WITH STRAIN GAUGE SENSOR FOR STIFFNESS MEASUREMENT

Yapeng Yuan^{1,3}, Yaxiaer Yalikun², and Yo Tanaka³

¹ Osaka University, JAPAN, ² Graduate School of Nara Institute of Science and Technology, JAPAN, and ³ Institute of Physical and Chemical Research (RIKEN), JAPAN

M175.f POSITION INDEPENDENT MICROPARTICLE SENSING WITH SU8 MICROELECTRODES 3-D INTEGRATED WITH MICROWAVE SENSORS

Yağmur C. Alataş¹, Uzay Tefek¹, Burak Sarı², and Mehmet S. Hanay¹ ¹ Bilkent University, TURKEY and ² Sabancı University, TURKEY

T173.f EIS MONITORING OF SINGLE YEAST GROWTH AND DISSECTION ON A MEA-INTEGRATED MICROFLUIDIC DEVICE

Zhao Zhang¹, Mingze Luo¹, Liudi Dong¹, Haoran Wu¹, Yanze Shi¹, Yingying Wang¹, Xiao Xie¹, Zixin Wang², Qing-An Huang¹, and Zhen Zhu¹

¹Southeast University, CHINA and ²Sun Yat-Sen University, CHINA

T174.f MICRO ULTRASONIC ENDOSCOPE ARRAYS FOR INVASIVE KNEE JOINT DIAGNOSTICS

Yuchen Chiang, Chien-Chong Hong, and Tong-Miin Liou National Tsing Hua University, TAIWAN

T175.f STUDY ON GEOMETRIC STRUCTURE OPTIMIZATION OF SPATIAL POSITIONING DEVICE BASED ON FLOATING ELECTRODES

Tan Wang, Qiang Fang, and Liang Huang Hefei University of Technology, CHINA

W172.f CLOSED LOOP, LOCALIZED TEMPERATURE CONTROL FOR MICRO-FLUIDICS

Saima Hamid, Naveen Kumar K. Ramakrishnan, and Shishir Kumar Indian Institute of Technology, Hyderabad, INDIA

W173.f ELECTRO-MICROFLUIDIC DETECTION AND QUANTIFICATION OF MICROPLASTICS IN WATER: SALINITY'S IMPACT ON SENSOR PERFORMANCE

Haider Warraich, Alireza Zabihihesari, Shooka Karimpour, and Pouya Rezai York University, CANADA

W174.f ORIGAMI-INSPIRED TACTILE SENSOR WITH ENHANCED SENSITIVITY IN POSTURE AND BRUXISM DETECTION

Rajat Subhra Karmakar¹, Chia-Pei Chu¹, Jhih-Fong Huang², Jui-I Chao², Ying-Chih Liao¹, and Yen-Wen Lu¹

¹National Taiwan University, TAIWAN and

²National Yang Ming Chiao Tung University, TAIWAN

Others

M176.f EVALUATION METHOD FOR INTERNAL ELASTIC DISTRIBUTIONS OF CELL CULTURE ENVIRONMENTS BY USING ARRAYED LIGHT-DRIVEN GEL ACTUATORS

Hibiki Nakajima¹, Yoshiyuki Yokoyama², Masaya Hagiwara³, and Takeshi Hayakawa¹

¹Chuo University, JAPAN, ²Toyama Industrial Technology Research and Development Center, JAPAN, and ³Institute of Physical and Chemical Research (RIKEN), JAPAN

M177.f SMARTPHONE-BASED TACHOMETER FOR LOW-COST POINT-OF-CARE CENTRIFUGAL MICROFLUIDICS APPLICATIONS

Noa Lapins, Ahmad Saleem Akhtar, and Aman Russom KTH Royal Institute of Technology, SWEDEN

T176.f MULTIPLEXED BIOSENSOR USING QUARTZ-ON-SILICON MICRO-ACOUSTIC (QSIM) TECHNOLOGY FOR IN-VITRO LABEL-FREE INVESTIGATION OF HEMOSTASIS

Aleksander Oseev^{1,4}, Franck Chollet^{1,4}, Thomas Lecompte^{2,3}, and Thérèse Leblois^{1,4}

¹University Bourgogne Franche-Comté, FRANCE, ²Université de Lorraine, FRANCE, ³Université de Genève, SWITZERLAND, and ⁴CNRS, FRANCE

W175.f A MINIATURIZED 3-D-MRI SCANNER FEATURING A HIGH-VOLTAGE SOI ASIC FOR NON-INVASIVE OBJECT RECONSTRUCTION AND FLOW ANALYSIS

Shuhao Fan¹, Qi Zhou¹, Ka-Meng Lei¹, Rui P. Martins¹², and Pui-In Mak¹ ¹*University of Macau, MACAO and* ²*Universidade de Lisboa, PORTUGAL*

W176.f PERMITTIVITY-BASED MICROPARTICLE CLASSIFICATION BY THE INTEGRATION OF IMPEDANCE CYTOMETRY AND MICROWAVE RESONATORS

Uzay Tefek¹, Burak Sari², and Mehmet S. Hanay¹

¹Bilkent University, TURKEY and ²Sabanci University, TURKEY

g - Other Applications of Microfluidics

Artificial Intelligence and Microfluidics

M178.g AUTONOMOUS CELL DISTROBUTION CONTROL MICROFLUIDIC SYSTEM BASED ON DEEP REINFORCEMENT LEARNING

Kenji Tamura, Takaaki Abe, and Yoshiaki Ukita University of Yamanashi, JAPAN

M179.g EVALUATING DONOR RED BLOOD CELL QUALITY USING BLOOD SMEARS AND DEEP LEARNING

Erik S. Lamoureux¹, You Cheng¹, Emel Islamzada¹, Kerryn Matthews¹, Simon P. Duffy^{1,2}, and Hongshen Ma^{1,3}

¹University of British Columbia, CANADA, ²British Columbia Institute of Technology, CANADA, and ³Vancouver General Hospital, CANADA

T177.9 ARTIFICIAL INTELLIGENCE-BASED VESSEL-ON-A-CHIP PLATFORM FOR ACCURATE IDENTIFICATION OF DEVELOPMENTAL STAGES IN VASCULOGENESIS

Hang Zhou, Taiga Irisa, Kazuya Fujimoto, and Ryuji Yokokawa *Kyoto University, JAPAN*

T178.g DEEP LEARNING-BASED OBJECT DETECTION FOR SOIL BACTERIAL COMMUNITY ANALYSIS IN MICROFLUIDICS

Hanbang Zou, Alexandros Sopasakis, Francois Maillard, Erik Karlsson, Julia Duljas, Simon Silwer, Pelle Ohlsson, and Edith C. Hammer Lund University, SWEDEN

T179.g SEGMENTATION, FEATURE EXTRACTION AND CLASSIFICATION OF LEUKOCYTES LEVERAGING DEEP NEURAL NETWORKS

Tingxvan Fang^{1,2}, Xvkun Huang^{1,3}, Xiao Chen^{1,3}, Deyong Chen^{1,3}, Junbo Wang^{1,3}, and Jian Chen^{1,3}

¹ Chinese Academy of Sciences, CHINA, ² Wuhan University, CHINA, and ³ University of Chinese Academy of Sciences, CHINA

W177.9 ARTIFICIAL INTELLIGENT IDENTIFICATION AND CLASSIFICATION OF SINGLE CANCER CELLS USING HYPERSPECTRAL IMAGE COMBINED WITH MACHINE LEARNING WITHOUT FLUORESCENCE LABELING

Chih-Ching Hsu1 and Fan-Gang Tseng1,2

¹National Tsing Hua University, TAIWAN and ²Academia Sinica, TAIWAN

W178.g DEEP LEARNING-ENABLED HIGH-THROUGHPUT DETECTION OF SARS-COV-2 VARIANT OF CONCERN USING THE CENTRIFUGAL MICROFLUIDIC PLATE

Li Zhang and Youchun Xu Tsinghua University. CHINA

Fuel Cells & Energy

W179.g INSIGHTS IN OPERATION OF MEMBRANELESS MICRO FLOW BATTERIES

Alberto E. Quintero^{1,2}, Beatriz Oraá-Poblete¹, Daniel Perez-Antolin¹, Ange A. Maurice², and Alberto Bernaldo de Quirós¹

**Micro Electrochemical Technologies S.L., SPAIN and

²Carlos III of Madrid University, SPAIN

Microfludics for X-Ray and e-Beam Applications

M180.g CREATION OF A BIOLOGICAL X-RAY IMAGING SYSTEM INCORPORATING A MICROFLUIDIC SYSTEM

Akinobu Yamaguchi, Kanta Yamamoto, Shunya Saegusa, Hidehiro Ishizawa, Masahiro Takeo, Sho Amano, Satoru Suzuki, and Yuichi Utsumi University of Hyogo, JAPAN

M181.g X-RAY-COMPATIBLE MICROFLUIDIC DEVICE FOR DIELECTROPHORETIC MANIPULATION AND TRAPPING OF CELLS AND MICROPARTICLES

Simone De Carli¹, Neus Godino¹, Christian Guernth-Marschner¹, Chang Liu^{2,3}, Wilhelm Eschen^{2,3}, Jan Rothhardt^{2,3,4}, and Michael Kirschbaum¹

¹ Fraunhofer IZI-BB, GERMANY, ² Friedrich-Schiller-University Jena, GERMANY, ³ Helmholtz-Institute Jena, GERMANY, and ⁴ Fraunhofer IOF, GERMANY

T180.g DROPLET-ON-DEMAND SAMPLE DELIVERY AT A PULSED X-RAY SOURCE

Sebastian Dehe, Mark S. Hunter, Raymond G. Sierra, Thomas Kroll, and Daniel P. DePonte Stanford University, USA

W180.g IN SITU X-RAY DIFFRACTION OF ACCELERATED CEMENT CARBONATION WITH A 3D-PRINTED MICROFLUIDIC DEVICE

Valentin Herault, Eddy Foy, Valérie Geertsen, Corinne Chevallard, Stéphane Poyet, and Mark A. Levenstein Université Paris-Saclay, FRANCE

Microfluidics in Military and Defense Applications

T181.g AT-HOME BIOAEROSOL SAMPLING USING AEROSOLIZED DROPLETS AND OPEN MICROFLUIDICS

Wan-chen Tu, Jodie C. Tokihiro, David N. Phan, Tammi L. van Neel, Ulri N. Lee, Jean Berthier, Igor Novosselov, John S. Meschke, Ashleigh B. Theberge, and Erwin Berthier University of Washington, USA

Paper-Based Microfluidics

M182.g BASIC EVALUATION OF COLORIMETRIC SIGNALING ON PAPER-BASED ANALYTICAL DEVICES FOR TRACE HEAVY METAL ION ANALYSIS

Misaki Nakagawa, Sera Ohta, Yuki Hiruta, and Daniel Citterio Keio University, JAPAN

M183.g COMBINATION OF PAPER-BASED MICROFLUIDICS AND A CAFETIÈRE-BASED PRE-CONCENTRATION PROCESS FOR ON-SITE DETECTION OF COPPER CONTAMINATION IN WATERS

Jacqueline Karlsson¹, Pablo Giménez-Gómez¹, Samantha Richardson², Alexander Iles¹, and Nicole Pamme¹

1 Stockholm University, SWEDEN and 2 University of Hull, UK

M184.g IMPACT OF PAPER CHARACTERISTICS ON CHEMIRESISTOR SWEAT VOLUME SENSOR

Genis Rabost-Garcia^{1,2}, Laura Verdaguer-Sánchez¹, and Jasmina Casals-Terré¹

¹ Universitat Politècnica de Catalunya, SPAIN and ² Onalabs Inno-hub S.L., SPAIN

M185.g PAPER FLUIDICS FOR THE INVESTIGATION OF ROOT EXUDATES OF LIVING PLANTS IN SPACE AND TIME

Daniel Patko¹, Udara B. Gunatilake¹, Lionel X. Dupuy^{2,3}, Lourdes Basabe-Desmonts^{1,3}, and Fernando Benito-López¹ ¹University of the Basque Country, SPAIN, ²NEIKER, SPAIN, and ³IKERBASQUE, SPAIN

M186.g SMART AND PORTABLE PAPER-BASED SENSOR FOR ON-SITE DETECTION OF NITRATES AND LEAD IONS IN ENVIRONMENTAL MONITORING

Akashlina Basu and Soumen Das Indian institute of Technology, Kharagpur, INDIA

T182.9 BLOOMSAFE: DEVELOPING A COST-EFFECTIVE, RAPID, AND PORTABLE DIAGNOSTIC TOOL FOR THE DETECTION OF TOXINS RESULTING FROM ALGAL BLOOMS

Marcus S. Hill, Andrew P. Dean, James Redfern, and Kirsty J. Shaw Manchester Metropolitan University, UK

T183.g DEVELOPMENT OF A DISTANCE-BASED PAPER ANALYTICAL DEVICE FOR ON-SITE MONITORING OF DISSOLVED INORGANIC CARBON IN INLAND WATERS

Pablo Giménez-Gómez¹, Iris Hättestrand¹, Susanne Sjöberg¹, Christophe Dupraz¹, Samantha Richardson², Mike Rogerson³, and Nicole Pamme¹

¹ Stockholm University, SWEDEN, ² University of Hull, UK, and ³ Northumbria University, UK

T184.g MULTIPLEXED ANALYSIS OF SOIL NUTRIENTS WITH CAFETIÈRE-BASED EXTRACTION AND PAPER-BASED ANALYTICAL DEVICES (PADS) FOR ON-SITE MONITORING

Nicolina Priem¹, Pablo Giménez-Gómez¹, Samantha Richardson², and Nicole Pamme¹

¹Stockholm University, SWEDEN and ²University of Hull, UK

T185.g PAPER-BASED MICROFLUIDIC DEVICE FOR THE DETECTION OF MICROBIAL CONTAMINATION AND ANTIMICROBIAL RESISTANCE IN DRINKING WATER

Yuwei Pan^{1,2} and Zhugen Yang¹

¹ Cranfield University, UK and ² University of Glasgow, UK

W181.g AN OFFLINE DEEP LEARNING-ASSISTED AUTOMATED PAPER-BASED MICROFLUIDIC PLATFORM

Sixuan Duan^{1,2}, Tianyu Cai¹, Fuyuan Liu^{1,2}, Hang Yuan¹, Yifan Li^{1,2}, Wenwen Yuan^{1,2}, Keran Jiao¹, Min Chen^{1,2}, Yuyuan Chen¹, and Pengfei Song^{1,2}

¹Xi'an Jiaotong-Liverpool University, CHINA and ²University of Liverpool, UK

W182.g CAPILLARY-DRIVEN MICROFLUIDICS COUPLED WITH PAPER-BASED PLATFORM FOR RAPID AND USER-FRIENDLY DETECTION OF WATER CONTAMINANTS

Prakash Aryal¹, Claire Hefner¹, Eric Brack², Todd Alexander², and Charles Henry^{1,3}

¹ Colorado State University, USA, ²U.S. Army Combat Capabilities Development Command (DEVCOM), USA, and ³ Chulalongkorn University, USA

W183.g EVALUATION OF PAPER-BASED LATERAL-FLOW STRIP FOR EARLY DIAGNOSIS OF BREAST CANCER USING ACTUAL HUMAN SERUM

Jungchan Shin¹, Dongwoo Kim¹, Keunkoo Shin¹, Yugyeong Kim², Eunae Kang², Jongam Song¹, and Kyounghoon Suh¹

¹E&S Healthcare Co., Ltd., KOREA and

²Nature Inspired Energy Technology (NIET), KOREA

W184.g ORIGAMI PAPER MICROFLUIDIC ASSAY TO TEST EDIBLE OIL QUALITY

Pavithra Sukumar¹, Muhammedin Deliorman¹, Fernando Castano¹, Dana H. Abujalban³, Muhammad A. Datt³,

and Mohammad A. Qasaimeh1,2

¹New York University, Abu Dhabi, UAE, ²New York University, USA, and

³ Jordan University of Science and Technology, JORDAN

W185.g REAL-TIME FLOW MONITORING PLATFORM FOR PAPER-BASED MICROFLUIDIC DEVICES

Isidoro Ruiz-García, Pablo Escobedo, Celia E. Ramos-Lorente, Miguel M. Erenas, Luis F. Capitan-Vallvey, Miguel A. Carvajal, Alberto J. Palma, and Nuria Lopez-Ruiz University of Granada, SPAIN

Space Exploration

M187.q LAB-PAYLOAD FOR BIO-NANOSATELLITE

Patrycja Sniadek, Agnieszka Krakos, Adrianna Graja, Bartosz Kawa, Marcin Białas, Rafal Walczak, and Jan Dziuban Wrocław University of Science and Technology, POLAND

T186.g INERTIAL MICROFLUIDIC PASSIVE MIXER FOR BIOLOGICAL NANOSATELLITE MISSIONS

Adrianna Graja, Mateusz Gumieniak, Maciej Dzimira, Tymon Janisz, and Agnieszka Krakos Wrocław University of Science and Technology, POLAND

T187.9 MEMS PLASMA SPECTROMETER FOR DETECTION OF THE BIOTIC METHANE ON MARS

Jan Dziuban¹, Pawel Knapkiewicz¹, Tomasz Grzebyk¹, and Pin Chen²

¹ Wrocław University of Science and Technology, POLAND and

² Jet Propulsion Laboratory California Institute of Technology, USA

W186.g INTEGRATED MICROFLUIDIC SYSTEM FOR AUTOMATED BACTERIAL CULTIVATION IN SPACE

Wen-Ching Chen¹, Pin-Ru Huang¹, Jun-Wei Chang¹, Shao-Yu Huang¹, Chieh-Chen Huang¹, and Ya-Yu Chiang¹. 2

¹National Chung Hsing University, TAIWAN and

²National Taiwan University, TAIWAN

W187.g MEMS-BASED MASS SPECTROMETER FOR POTABLE AND SPACE APPLICATIONS

Piotr Szyszka, Jakub Jendryka, Jan Sobków, Michał Zychla, Marcin Białas, Paweł Knapkiewicz, Jan Dziuban, and Tomasz Grzebyk

Wrocław University of Science and Technology, POLAND

Others

M188.g A SELF-ALIGNING TERAHERTZ METASURFACE MICROFLUIDIC SENSOR WITH HIGH SENSITIVITY AND HIGH QUALITY FACTOR

Yunhao Cao, Hongshun Sun, Lijun Ma, Yusa Chen, and Wengang Wu Pekina University. CHINA

GROWING THE UNKNOWN: INVESTIGATION INTO A NEW APPROACH T188.g FOR IN-SITU MICROBIAL GROWTH

Sydney K. Wheatley^{1,2}, Tina Navaei³, Emily Pope³, Tartela Alkayyali³, Christopher Cartmell⁴, Bradley A. Haltli^{3,5}, Russell G. Kerr^{3,5}, and Ali Ahmadi^{1,2}

¹École de Technologie Supérieure, CANADA, ²University of Montreal Hospital Research Centre, CANADA, 3 University of Prince Edward Island, CANADA, 4University of Arizona, USA, and 5 Nautilus BioSciences, CANADA

h - Late News

Cells, Organisms and Organs on a Chip

M189.h A MICROFLUIDIC ANALYSIS OF CELL-CELL COMMUNICATION FOR SCREENING OF CHEMICALS TO REGULATE CIRCADIAN METABOLISM

Huiseong Son and Chang-Soo Lee Chungnam National University, KOREA

M190.h BIOENGINEERED HUMAN GUT-ON-CHIP MODEL TO STUDY HOST-MICROBIOME INTERACTIONS

Elise Delannoy, Aurélie Burette, Catherine Daniel, Laurine De Rycker, and Alexandre Grassart University of Lille, FRANCE

M191.h DEVELOPMENT OF POLY(ETHYLENE-GLYCOL)-DIMETHACRYLATE (PEGDMA)-BASED BIOINK FOR STEREOLITHOGRAPHY THREE-DIMENSIONAL (3D) PRINTING

Shu-Yung Chang, Joseph Zhi Wei Lee, Anupama S. Ranganath, Terry Ching, and Michinao Hashimoto Singapore University of Technology and Design, SINGAPORE

M192.h EXPLORATION OF DETRIMENTAL EFFECT OF AGES ON 3D SKELETAL MUSCLE MODEL IN MICROPHYSIOLOGICAL SYSTEM

Jaesang Kim¹, Inu Kim¹, Jeongmoo Han¹, Jisong Ahn², Youngmin Jo¹, Pilnam Kim¹, Hongki Yoo¹, and Jessie S. Jeon¹ ¹Korea Advanced Institute of Science and Technology, KOREA and ²Korea Food Research Institute, KOREA

M193.h INTEGRATION OF SENSORS ONTO POROUS MEMBRANES FOR ELECTRICAL MONITORING OF CARDIOMYOCYTES

Derrick J. Butler and Darwin R. Reyes National Institute of Standards and Technology, USA

M194.h MICROFLUIDIC 3D CULTURES OF SCAFFOLD-FREE CARDIOMYOCYTE SPHEROIDS DIFFERENTIATED FROM HUMAN-INDUCED PLURIPOTENT STEM CELLS

Marina Castro Guerrero, Päivi Järvinen, Virpi Talman, Markus Haapala, and Tiina Sikanen University of Helsinki, FINLAND

M195.h MICROGELS FOR A LARGE-SCALE SCREENING AND LONGITUDINAL OBSERVATIONS OF CANCER CELL DORMANCY

Misa Minegishi¹ and Hirofumi Shintaku^{1,2}

¹ RIKEN, JAPAN and ² Kyoto University, JAPAN

M196.h PDMS-BASED MICROFLUIDIC APPROACH FOR PRIMARY MURINE ENDOTHELIAL CELLS PHENOTYPING

Stefano Rocchetti¹, Kasper Marchlewicz^{2,3}, Marek Grosicki¹, Kanchana Pandian⁴, Michal Chudy³, and Stefan Chlopicki¹

¹ Jagiellonian University, POLAND, ² Warsaw University of Technology, POLAND, ³ University of Warsaw, POLAND, and

⁴ Leiden University, NETHERLANDS

M197.h SPONTANEOUS DYNAMIC MICROCOMPARTMENTATION IN CELL-SIZED MICRODROPLETS

Naoki Sasaki and Sakurako Kojima Rikkyo University, JAPAN

T189.h A MICROFLUIDIC PLATFORM FOR STUDYING MECHANO-CHEMICAL INTERACTIONS BETWEEN CO-CULTURES OF CANCER AND ENDOTHELIAL CELLS

Brian J. Nablo and Darwin R. Reyes National Institute of Standards and Technology (NIST), USA

T190.h BIOPRINTING OPTIMIZATION BY COMPUTATIONAL FLUID DYNAMICS MODELING

Simone L. Marasso¹, Francesca Frascella², Jens Grabel³, Lucia Napione², Simona Villata², Desiree Baruffaldi², Lukas Wichmann³, and Peter Farber³ ¹CNR-IMEM, ITALY, ²Politecnico di Torino, ITALY, and ³Hochschule Niederrhein, GERMANY

T191.h DYNAMIC ORGAN-ON-A-CHIP FABRICATION USING

Terry Ching^{1,2}, Nina Shu-Yung Chang¹, Yi-Chin Toh³, and Michinao Hashimoto¹

¹Singapore University of Technology and Design, SINGAPORE,

²National University of Singapore, SINGAPORE, and

³ Queensland University of Technology, AUSTRALIA

T192.h EXPLORING MICROBE-INDUCED GUT DISEASE AND THERAPEUTICS WITH A GUT MICROBIOME-ON-A CHIP

Jeeyeon Lee, Nishanth Menon, and Chwee Teck Lim National University of Singapore, SINGAPORE

T193.h LUNG-ON-CHIP FOR THE STUDIES OF TUMOR HETEROGENEITY AND TARGETED THERAPY TESTS

Yu-Che Chueh¹, Yi-Ting Ke¹, Kang-Yun Lee², Wei-Lun Sun³, and Cheng-Hsien Liu¹ ¹National Tsing Hua University, TAIWAN, ²Taipei Medical University, TAIWAN, and ³Pythia Biotech Ltd. TAIWAN

T194.h MICROFLUIDIC PERFUSION CULTURE DEVICE THAT APPLIES MULTIPLE DEGREES OF SHEAR STRESS AND VARIOUS FLOW TYPES

Hayate Yamamoto¹, Jumpei Muramatsu¹, Shigenori Miura², and Hiroaki Onoe¹

¹Keio University, JAPAN and ²University of Tokyo, JAPAN

T195.h MONITORING BRAIN ACTIVITY WITH ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

Shadi Karimi^{1,2}, Jasmina Casals Terre¹, and Michael Krieg²

1 Universitat Politecnica Catalunya, SPAIN and
2 Institute of Photonic Sciences, SPAIN

T196.h POLYSTYRENE LUNG-ON-A-CHIP MODEL FOR OXYGEN METABOLISM STUDIES

Pim de Haan¹, Jean-Paul S.H. Mulder¹, Ruby E.H. Karsten¹, Monieb A.M. Ahmed¹, Maud Pijnenburg², Anika Nagelkerke¹, Irene H. Heijink², and Elisabeth Verpoorte¹

¹ University of Groningen, NETHERLANDS and ² University Medical Center Groningen, NETHERLANDS

T197.h TAPERED MICROSTEPS IN MICROCHANNELS FOR BUILDING THREE-DIMENSIONAL UNIDIRECTIONAL NEURAL NETWORKS

Sanshiro Yanagawa¹, Midori Kato-Negishi², and Hiroaki Onoe¹

**Ikeio University, JAPAN and **Musashino University, JAPAN

W188.h A NOVEL SILICON MESH MEMBRANE AS A SCAFFOLD FOR ORGAN-ON-CHIP APPLICATIONS

Mariia Zakharova¹, Mar Cóndor², Sohail F. Shaikh², Aaron Delahanty², Dries Braeken², Andries D. van der Meer¹, and Loes I. Segerink¹ ¹ University of Twente, NETHERLANDS and ² Interuniversity Microelectronics Centre. BELGIUM

W189.h DEVELOPMENT OF A BREAST CANCER MICROENVIRONMENT PLATFORM FOR ANTI-CANCER DRUG SCREENING

Ki-Hwan Nam and HyeMi Kim Korea Basic Science Institute, KOREA

W190.h ENHANCING THE ENRICHMENT OF WHITE BLOOD CELLS IN A SIZE-BASED SEPARATION MICROFLUIDIC DEVICE WITH A RECTANGULAR CHANNEL

Dhiren Mohapatra, Rahul Purwar, and Amit Agrawal Indian Institute of Technology Bombay, INDIA

W191.h HIGH-THROUGHPUT ORGAN-ON-A-CHIP PLATFORM FOR OSTEOARTHRITIS MODELING AND BIOMARKER DETECTION

Aldeliane Maria Da Silva¹, Heidi Hannula¹, Muthusamy Saranya¹, Tuan Nguyen², Sebastien Mosser², Prateek Singh², Ali Mobasheri¹, and Gabriela S. Lorite¹

1 University of Oulu, FINLAND and ² Finnadvance, FINLAND

W192.h MAGNETICALLY-ASSEMBLED ARRAYS OF MICROVASCULAR NETWORKS ON CHIP

Katarzyna Rojek¹, Antoni Wrzos², Stanisław Żukowski², Michał Bogdan¹, Maciej Lisicki², Piotr Szymczak², and Jan Guzowski¹ ¹Polish Academy of Sciences, POLAND and

²University of Warsaw, POLAND

W193.h MICROFLUIDIC-BASED ISOLATION AND ANALYSIS OF CIRCULATING TUMOR CELLS FOR MONITORING THERAPY EFFICACY IN PANCREATIC DUCTAL ADENOCARCINOMA PATIENTS

Malgorzata A. Witek^{1,2}, lan M. Freed¹, Anup Kasi², Oluwadamilola Fateru¹, Mengjia Hu², Nyla Weatherington¹, Harsh Pathak², Stephen Hyter², Mateusz L. Hupert³, Prabhakar Chalise², Andrew K. Godwin², and Steven A. Soper^{1,2} ¹University of Kansas, USA, ²University of Kansas Medical Center, USA, and ³Biofluidica. Inc., USA

W194.h NOVEL LIQUID BASED OXYGEN ISOLATION TECHNOLOGY FOR SINGLE CELL SCREENING FOR MITOCHONDRIAL DISEASES

Shruti Mankar, Abhishek Kumarranjan, Kunpeng Cai, and Kentaro Shirai Sysmex Corporation, JAPAN

W195.h PUMPLESS FLUIDIC DEVICE FOR THE CULTURE OF MECHANOSENSITIVE CELLS UNDER UNIDIRECTIONAL RECIRCULATING FLUIDIC FLOW

Eun-Jin Lee1,2 and Mandy B. Esch2

¹University of Maryland, USA and ²National Institute of Standards and Technology (NIST), USA

Diagnostics, Drug Testing & Personalized Medicine

M198.h A SAMPLE-TO-ANSWER MICROFLUIDIC SYSTEM FOR NAKED-EYE DETECTION OF HEPATITIS C RNA USING IMMISCIBLE PHASE EXTRACTION COUPLED WITH ISOTHERMAL AMPLIFICATION

Mohammad N. Abo-Zeid^{1,2}, Bongkot Ngamsom¹, Alexander Iles³, Nicole Pamme³, Cheryl Walter¹, and John Greenman¹

1 University of Hull, UK, ²Assiut University, EGYPT, and ³Stockholm University, SWEDEN

M199.h ANALYTICAL PANEL BASED ON SPRI BIOSENSORS FOR QUANTIFICATION OF SELECTED POTENTIAL BRAIN GLIOMA BIOMARKERS

Lukasz Oldak^{1,2} and Ewa Gorodkiewicz^{1,2}

¹ University of Bialystok, POLAND and ² Biomarkilo Sp. z o.o., POLAND

M200.h DEVELOPMENT OF A PIPELINE TO STREAMLINE DESIGN OF CRISPR-BASED DIAGNOSTIC TOOLS FOR THE DIFFERENTIATION OF SARS-COV-2 VARIANTS

Gabriel Lamothe¹, Julie Carbonneau¹, Charles Joly-Beauparlant¹, Thierry Vincent¹, Patrik Quessy², Anthony Guedon², Gary Kobinger³, Jean-François Lemay², Guy Boivin¹, Arnaud Droit¹, Nathalie Turgeon¹, and Jacques P. Tremblay¹

¹Laval University, CANADA, ²CNETE, Inc., CANADA, and ³University of Texas Medical Branch, USA

M201.h HIGH-PERFORMANCE MICROFLUIDIC DNA EXTRACTOR BASED ON OPTIMIZED EXCITATION VOLTAGE AND 3D OUT-OF-PLANE CAVITATION MICROSTREAMING

Sofonias N. Kedir, Bhargav K. Pullagura, Abdi M. Kaba, and Dohyun Kim *Myongji University, KOREA*

M202.h PROTEIN DIGESTION BY THIN-LAYER NANOFLUIDIC CHANNELS

Yu-Ting Hung¹, Kyojiro Morikawa^{1,2,3}, Hai Linh Tran¹, Chihchen Chen¹, and Takehiko Kitamori^{1,3,4}

¹National Tsing Hua University, TAIWAN, ²University of Tokyo, JAPAN, ³Kanagawa Institute of Industrial Science and Technology, JAPAN, and ⁴Lund University, SWEDEN

T198.h ACOUSTIC TRAPPING BASED HIGH THROUGHPUT ISOLATION AND CHARACTERIZATION OF PATHOGEN ACTIVATED PLATELET DERIVED EXTRACELLULAR VESICLES FROM PLASMA

Axel Broman, Frida Palm, Genevieve Marcoux, John Semple, Thomas Laurell, Johan Malmström, and Oonagh Shannon Lund University, SWEDEN

T199.h CENTRIFUGE FREE IMMUNE CELL RADIOLABELING ACHIEVED USING ACOUSTOPHORESIS METHODS

Stephen Adler¹, Emma Stevenson², Noriko Sato³, Julia Alsved⁴, and Peter Choyke³

¹Frederick National Laboratory for Cancer Research, USA, ²University of Alabama, USA, ³National Cancer Institute, USA, and ⁴AcouSort AB, SWEDEN

T200.h FILTER-IN-CENTRIFUGE SEPARATION OF LOW-CONCENTRATION BACTERIA FROM BLOOD

Mohammad Osaid, Kaiyang Zeng, and Wouter van der Wijngaart KTH Royal Institute of Technology, SWEDEN

T201.h INTEGRATED MICROFLUIDIC DEVICE FOR RAPID MIXING, LOW CONSUMPTION AND FAST DISPENSING FOR APPLICATIONS IN TIME-RESOLVED CRYOGENIC ELECTRON MICROSCOPY

Stefania Torino^{1,2}, Mugdha K. Dhurandhar^{1,2}, and Rouslan G. Efremov^{1,2}

1 Vlaams Instituut voor Biotechnologie, BELGIUM and

²VUB - Vriie Universiteit Brussel, BELGIUM

T202.h TUMOR MICROENVIRONMENT LABCHIP INTEGRATING DIELECTROPHORESIS FOR HIPEC APPLICATIONS

Chia-Peng Wa<mark>ng¹, Chih-Y</mark>ung H<mark>s</mark>u¹, Mao-Chih Hsieh², Yu-Ting Tai², Jen-Tsan Ashley Chi³, Kang-Yun Lee⁴,

Wei-Lun Sun5, and Cheng-Hsien Liu1

¹National Tsing Hua University, TAIWAN, ²Taipei Municipal Wanfang Hospital, TAIWAN, ³Duke University, USA, ⁴Taipei Medical University, TAIWAN, and ⁵Pythia Biotech Ltd, TAIWAN

W196.h A MICROFLUIDIC DEVICE FOR ISOLATION AND QUANTITATION OF HEPATOCYTE-SECRETED EXTRACELLULAR VESICLES AND MONITORING THEIR EXOSOMAL ENZYME ACTIVITIES ON-CHIP

Ehsanollah Moradi, Päivi Järvinen, Markus Haapala, and Tiina Sikanen

University of Helsinki, FINLAND

W197.h ADVANCING CARDIOTOXICITY ASSESSMENT: SCADA PLATFORM FOR DRUG SCREENING OF HIPSC-DERIVED CARDIOMYOCYTES

Alba Calatayud-Sanchez¹, Pilar Montero-Calle², Fernando Benito-López¹, Manuel M. Mazo², and Lourdes Basabe-Desmonts^{1,3}

¹University of the Basque Country, SPAIN, ²University of Navarra, SPAIN, and ³Basque Foundation for Science, SPAIN

W198.h CHARACTERIZATION OF A 3D PRINTED MICROFLUIDIC CHIP FOR LOCALIZED AND SUSTAINED STIMULATION IN HIPPOCAMPAL SLICES

Colby E. Witt, Maria Kristendotter, Lauren M. Delong, and Ashley E. Ross University of Cincinnati, USA

W199.h FREEZE-DRYING OF IMMOBILIZED HUMAN LIVER MICROSOMES INSIDE MICROFLUIDIC ENZYME REACTORS

liro Rautsola¹, Markus Haapala¹, Leo Huttunen¹, Ossi Korhonen², and Tiina Sikanen¹

¹University of Helsinki, FINLAND and ²University of Eastern Finland, FINLAND

W200.h POINT-OF-CARE VISCOMETER FOR PORTABLE COAGULATION MEASUREMENT

Mina Stefanovic, Alexandros Sklavounos, Qimo Huang, Lenny Chen, Anthony Yong, and Aaron Wheeler University of Toronto, CANADA

Fundamentals in Microfluidics and Nanofluidics

M203.h DEVELOPING MINIATURIZED OPTICAL DETECTORS INTEGRATED ON CENTRIFUGAL LAB ON DISC PLATFORMS FOR COLOR-DEPENDENT DETECTIONS

Vahid Kordzadeh-Kermani¹, Maryam Vahid², Seyed Nezameddin Ashrafizadeh¹, Sergio O. Martinez-Chapa³, Marc J. Madou⁴, and Masoud Madadelahi³

¹Iran University of Science and Technology, IRAN, ²Isfahan University of Technology, IRAN, ³Tecnologico de Monterrey, MEXICO, and ⁴University of California, Irvine, USA

M204.h EVAPORATION OF BACTERIA-LADEN SURROGATE RESPIRATORY FLUID DROPLETS: SESSILE MODE V/S LEVITATED MODE

Amey Nitin Agharkar, Dipasree Hajra, Prasenjit Kabi, Dipshikha Chakravortty, Saptarshi Basu, and Vivek Jaiswal Indian Institute of Science, INDIA

M205.h HIGH-THROUGHPUT NUCLEIC ACID CYTOMETRY WITH HYDROLYSIS-PROBE PCR IN POLYACRYLAMIDE BEADS

Rodrigo Cotrim Chaves and Aaron Streets *University of California, Berkeley, USA*

M206.h PERMEATION MECHANISM OF IMIDAZOLIUM-BASED ILS INTO CU3(BTC)2 SINGLE CRYSTAL

Ichiro Ohira, Yumeng Zheng, and Kentaro Kinoshita Tokyo University of Science, JAPAN

M207.h RAPID, COST-EFFECTIVE CENTRIFUGAL MICROFLUIDIC DISC FOR AUTOMATED NANOLITER VOLUME ASSAY OPTIMIZATION

Renna L. Nouwairi, Carter K. Jones, Maura E. Charette, Emilee Holmquist, Zoey Golabek, and James P. Landers University of Virginia, USA

M208.h SHEATH FLOW ASSISTED ELECTRO-HYDRODYNAMIC LATERAL PARTICLE MIGRATION AND SEPARATION

Seyedamirhosein Abdorahimzadeh, Feby W. Pratiwi, Seppo J. Vainio, Henrikki Liimatainen, and Caglar Elbuken University of Oulu. FINLAND

T203.h DIELECTROPHORETIC MANIPULATION OF PREOSTEOBLASTIC CELLS IN PRESENCE OF A SILICA-BASED ALLOPLASTIC SCAFFOLD IN A MICROFLUIDIC FLOW CELL DEVICE

Lilliam V. Trejos-Soto¹, Abraham Valerio-Aguilar²³, Guido A. Ramírez-González¹, Sergio A. Paniagua⁴, Jorge Oviedo-Quirós²⁵, Alfonso García-Piñeres², Carolina Centeno-Cerdas¹, and Leonardo Lesser-Rojas² ¹ Costa Rica Institute of Technology (TEC), COSTA RICA, ²University of Costa Rica, COSTA RICA, ³Kent State University, USA, ⁴National Center for High Technology (CENAT), COSTA RICA, and ⁵National Children's Hospital, COSTA RICA

FLOW RATE-INDEPENDENT MULTISCALE MICROFLUIDIC SYSTEM AND ITS APPLICATIONS FOR THE CAPTURE AND STUDY OF CTCS

Jing Yan1 and Jerome Charmet2

¹University of Cambridge, UK, CHINA and ²University of Applied Sciences Western Switzerland, SWITZERLAND

T205.h INTEGRATED MICROVALVES FOR AUTONOMOUS ON-CHIP FLOW CONTROL

Mohammed Shahadha1, Denise Gruner1,2, Anthony Beck1, Andreas Voigt1, Markus Friedemann2, Paula Kalenczuk1, Stefan Grünzner¹, Franziska Obst¹, Uwe Marschner¹, Mario Menschikowski2, and Andreas Richter1 ¹ Technische Universität Dresden, GERMANY and ²University Hospital Carl Gustav Carus Dresden, GERMANY

T206.h PLATFORM BASED ON ACTIVE-MATRIX DIGITAL MICROFLUIDICS FOR HIGH-THROUGHPUT SINGLE-CELL PROCESSING AND SINGLE-CELL PROTEOMICS

Sivi Hu1,2

¹Chinese Academy of Sciences, CHINA and ²Guangdong ACXEL Micro & Nano Tech Co., Ltd. CHINA

T207.h REMOVAL OF DMSO FROM CELL SAMPLES USING ACOUSTIC TRAPPING

Albin Hermansson, Anke Urbansky, and Mikael Evander AcouSort AB. SWEDEN

W201.h AN INTEGRATED MULTIPLEXED CHIP FOR DIGITAL DROPLET LOOP-MEDIATED ISOTHERMAL AMPLIFICATION

Paul Gaube, Elfi Töpfer, and Claudia Gärtner microfluidic ChipShop GmbH, GERMANY

W202.h EFFICIENT OIL MICRODROPLET COLLECTION USING SPACE-FILLING OPEN MICROFLUIDIC CHANNELS WITH OLEOPHILIC AND **OLEOPHOBIC SURFACES**

Yusho Segawa¹, Kentaro Kinoshita¹, and Hirovuki Kai^{1,2} ¹Tokyo University of Science, JAPAN and ²Toyo University, JAPAN

W203.h FREEZE FRAME IMAGING- A NEW IMAGING TECHNIQUE FOR **FAST DYNAMICS PARTICLE TRACKING**

Ola Jakobsson¹, Massimiliano Rossi², Christian Cierpka³, and Per Augustsson1

¹Lund University, SWEDEN, ²University of Bologna, ITALY, and

³Technische Universität Ilmenau, GERMANY

W204.h NUMERICAL SIMULATION FOR COMPARISON OF MIXING EFFICIENCY IN SERPENTINE CHANNELS WITH DIFFERENT FLOW DIRECTIONS

Hyeonji Hong¹, Jaehwan Jeong², II Doh¹, and Eunseop Yeom² ¹Korea Research Institute of Standards and Science, KOREA and ²Pusan National University, KOREA

PUMP-FREE UNIDIRECTIONAL COLLOID TRANSPORT W205.h SYSTEM BASED ON LIGHT-DRIVEN SELF-ASSEMBLY IN WEDGE-SHAPED GAP

Natsumi Watanabe and Hiroaki Onoe Keio University, JAPAN

W206.h REUSABLE WIRE ELECTRODE INTERFACE FOR DROPLET MERGING WITH A PULSE-WIDTH FLOW MODULATION CONTROL SYSTEM TO SIMPLIFY DROPLET-BASED MICROFLUIDIC TISSUE SAMPLING

Andresa Bresler Bezerra, Md Mohibullah, and Christopher J. Easley *Auburn University, USA*

Integrated Microfluidic Platforms

M209.h DEVELOPMENT OF MULTI-MATERIAL 3D-PRINTED MICROFLUIDIC CONNECTORS FOR NANOPARTICLE SYNTHESIS

Muhammad Mubashar Saeed, David Kinahan, Nicholas Dunne, Eadaoin Carthy, and Srishti Agarwal Dublin City University, IRELAND

M210.h MICROFLUIDIC DISTILLATION DEVICE WITH CONTROLLING GAS AND LIQUID FILM FLOW

Chengyu Hsu¹, Kyojiro Morikawa^{1,2,3}, Satoru Matsuoka⁴, Morihito Saito⁴, Masaharu Ueno⁵, Chihchen Chen¹, and Takehiko Kitamori^{1,3,6}

- ¹National Tsing Hua University, TAIWAN, ²University of Tokyo, JAPAN,
- ³Kanagawa Institute of Industrial Science and Technology, JAPAN,
- ⁴Daicel Corporation, JAPAN, ⁵Tokushima University, JAPAN, and
- ⁶Lund University, SWEDEN

T208.h A PORTABLE HEATING AND COOLING TEMPERATURE CONTROLLER FOR ORGAN CHIPS

Shiemaa A.M. Elhassan¹, Gurhan Özkayar¹, Joost Lötters^{1,2}, Nicolaas J.H. Raat³, and Murali K. Ghatkesar¹ ¹ Delft University of Technology, NETHERLANDS, ²Bronkhorst B.V., NETHERLANDS, and ³Erasmus Medical Centre, NETHERLANDS

T209.h ELECTROKINETIC-ASSISTED CONTINUOUS SEPARATION OF CATIONIC DYES USING ANION-EXCHANGEABLE MULTISCALE-POROUS CHANNELS

Woonjae Choi and Geunbae Lim Pohang University of Science and Technology, KOREA

T210.h PRECISE SYNTHESIS OF COPOLYMERS USING SERIALLY CONNECTED GLASS MICROFLUIDIC CHIPS

Adelina Smirnova¹, Hisashi Shimizu¹, Yu Sugimoto¹, Kyojiro Morikawa^{1,2}, Takahiro Aratani³, Atsushi Mori³, Makoto Ouchi⁴, Chihchen Chen², and Takehiko Kitamori^{1,2,5} ¹ University of Tokyo, JAPAN, ² National Tsing Hua University, TAIWAN, ³ Daicel Corporation, JAPAN, ⁴ Kyoto University, JAPAN, and ⁵ Lund University, SWEDEN

W207.h A SEMI-AUTOMATED MONODISPERSITY-TUNABLE MAGNETIC PLATFORM FOR ON-CHIP IMMUNOMAGNETIC SEPARATION OF BACTERIA

Didem Rodoplu Solovchuk¹, Shou-Yu Ma¹, Jing-Yi Yang¹, Hung-Yu Chien¹, and Chia-Hsien Hsu^{1,2,3}

¹ National Health Research Institutes, TAIWAN, ² National Tsing Hua University, TAIWAN, and ³ National Chung Hsing University, TAIWAN

W208.h FLUIDIC CONTROL OF AN INTEGRATED AND MODULAR SYSTEM FOR DIAGNOSING ISCHEMIC STROKE

Katie Childers¹, Harshani Wijerathne¹, Sheila de Melo Barros¹, Favour Nwachukwu¹, Mateusz L. Hupert², Farhad Shiri¹, Malgorzata A. Witek¹, Daniel S. Park³, Alison Baird⁴, and Steven A. Soper¹

¹University of Kansas, USA, ²Biofluidica, Inc, USA, ³Louisiana State University, USA, and ⁴SUNY Downstate Medical Center, USA

W209.h PROTEIN-PROTEIN INTERACTION MEASUREMENT USING PARTICLE DIFFUSOMETRY IN A LOW-VOLUME MICROFLUIDIC CHIP

Hui Ma, Aiswarya A. Ramanujam, Jacqueline C. Linnes, and Tamara L. Kinzer-Ursem *Purdue University, USA*

Micro- and Nanoengineering

M211.h A NEW POLYMERIC, BIODEGRADABLE, AND MINIMALLY INVASIVE GLAUCOMA IMPLANT

Inês C.F. Pereira

Eindhoven University of Technology, NETHERLANDS

M212.h IMPROVING INTERFACIAL ADHESION OF HYDROGEL MATRICES TO PDMS-BASED MICROFLUIDIC PLATFORMS

Yu Na, Utku Devamoglu, Séverine Le Gac, and Julieta I. Paez University of Twente, NETHERLANDS

M213.h LOW-COST MICROFLUIDIC PDMS MOLDS BASED ON PCB SILKSCREEN FOR EDUCATIONAL AND RAPID PROTOTYPING USE

Marco Carminati
Politecnico di Milano, ITALY

M214.h THE PREPARATION OF SERS SUBSTRATE USING Ultrasonic-assisted fabrication method

FOR THE DETECTION OF HUMAN IGG

Aysen Gumustas^{1,2}, Hilal Torul³, Mert Kerem Ulku⁴, M.A. Sahir Arikan⁴, Ugur Tamer^{1,3}, and Ender Yildirim^{1,4}

¹METU MEMS Center, TURKEY, ²Ankara University, TURKEY,

³ Gazi University, TURKEY, <mark>and ⁴ Middle East Technical Univers</mark>ity, TURKEY

T211.h AN INTEGRATED BIOSENSOR FOR AFLATOXIN B1 DETECTION

Yi Liu, Cong Lin, and Jiahao Miao Peking University, CHINA

T212.h FABRICATION OF WARP-RESISTANT MICROMOLDS BY DIGITAL-LIGHT-PROCESSING (DLP) PRINTING

Nie Xiaolei, Nidhi Nagaraju, and Michinao Hashimoto Singapore University of Technology and Design, SINGAPORE

T213.h MICROFLUIDIC FRONT DYNAMICS FOR THE CHARACTERIZATION OF PUMPS FOR LONG-TERM AUTONOMOUS MICROSYSTEMS

Yara Alvarez-Braña¹, Andreu Benavent-Claro², Fernando Benito-López¹, Aurora Hernandez-Machado², and Lourdes Basabe-Desmonts¹ ¹University of the Basque Country, SPAIN and

²University of Barcelona, SPAIN

T214.h STUDYING AND IMPROVING THE CYTOCOMPATIBILITY OF SLA RESINS

Bastien Venzac³, Sem Bertelink¹, Ludivine Laffont², Isabelle Grasseau², Karine Reynaud², Marie Saint-Dizier², and Séverine Le Gac¹

1 University of Twente, NETHERLANDS, ²PRC - INRAE, FRANCE, and

3 LAAS - CNRS. FRANCE

W210.h DEVELOPING A BACKSIDE PHOTOLITHOGRAPHY METHOD FOR CREATING MICROFLUIDIC BLOOD OXYGENATORS WITH ROUNDED CROSS-SECTIONS AND HIERARCHICAL BLOOD VASCULAR NETWORKS

Neda Saraei and Ravi Selvaganapathy McMaster University, CANADA

W211.h IN-LINE QUALITY CONTROL SYSTEM FOR THE STATE-OF-THE-ART ROLL-TO-ROLL MASS-MANUFACTURING PROCESS FOR VERSATILE MICROFLUIDIC SYSTEMS

Nastasia Okulova¹, Victor J. Tolstrup¹, Conor OʻSullivan¹, Anja Haase², Andoni Rodriguez³, Andreas Flanschger³, Alvaro Conde⁴, Maciej Skolimowski⁴, Veronica Mora Sanz⁵, Nerea Briz Iceta⁵, and Jan Kafka¹ ¹Inmold A/S, DENMARK, ²JOANNEUM RESEARCH, AUSTRIA, ³bionic surface technologies GmbH, AUSTRIA, ⁴Micronit Micro Technologies, NETHERLANDS, and ⁵Tecnalia Research and Innovation. SPAIN

W212.h NOVEL MAGNETIC CULTURE SUBSTRATES: POLYCARBONATE AND POLYDIMETHYLSILOXANE MEMBRANES FOR STUDYING CARDIAC CELL RESPONSES

Oliwia Tadko¹, Dominik Kołodziejek¹, Zuzanna Żółtowska¹, Natalia Wasiak¹, Marcin Drozd^{1,2}, and Elżbieta Jastrzębska^{1,2} ¹ Warsaw University of Technology, POLAND and ² Center of Advanced Materials and Technologies, POLAND

Other Applications of Microfluidics

M215.h IMAGE-TO-HYDRAULIC RESISTANCE: PRE-TRAINED ARTIFICIAL NEURAL NETWORK MODEL TO OVERCOME HAGEN-POISEUILLE EQUATIONS LIMITATIONS

Juan Sandubete-López^{1,2}, Patrick Finn¹, José L. Risco-Martín², and Alexander H. McMillan¹

¹Elvesys Microfluidic Innovation Center, FRANCE and

²Universidad Complutense de Madrid, SPAIN

M216.h UTILIZING CHATGPT TO ASSIST CAD FOR MICROFLUIDIC DEVICES Brady L. Goenner, Matt D. Nelson, and Bruce K. Gale University of Utah. USA

T215.h THE AUTOMATION AND CHARACTERIZATION OF A MICROFLUIDIC ACOUSTIC LEVITATION SYSTEM FOR SYNCHROTRON

SAMPLE DELIVERY

Eleanor Hedges¹, Danny Axford², Davide Crivelli², Emilio Perez Juarez², Gabriel Leen³, Victoria Baker⁴, Florimond Gueniat⁴, and Peter Docker² ¹University of Shefield, UK, ²Diamond Light Source, UK, ³University of Limerick, IRELAND, and ⁴Birminham City University, UK

W213.h ICE-NUCLEATING PARTICLE ACTIVITY IN RIVER OUTFLOWS

Mark D. Tarn¹, Katherine H. Bastin¹, Rachel E. Sipler², and Benjamin J. Murray¹ ¹University of Leeds, UK and ²Bigelow Laboratory for Ocean

'University of Leeds, UK and 'Bigelow Laboratory for Oceal Sciences, USA

W214.h TNT PAPER-BASED SENSOR WITH ENHANCED SENSITIVITY

Viktoriia Lastivka¹, Piotr Kasprzak², Izabela Mazur², Piotr Baran², Wawrzyniec Pniewski², Ilona Grabowska-Jadach¹, Michal Chudy¹, Katarzyna Tokarska³, Kamil Zukowski³, and Artur Dybko¹

¹ Warsaw University of Technology, POLAND, ²Military Institute of Armament Technology, POLAND, and ³ CEZAMAT, POLAND

Sensors and Detection Technologies

M217.h 3-D PRINTED MICROFLUIDIC DEVICES FOR IN-FIELD COLOURIMETRIC MEASUREMENT OF SOIL MACRONUTRIENTS

Reuben Mah Han Yang¹, Fernando Maya Alejandro¹, Marcus Hardie¹, Richard Doyle¹, Lawrence Di Bella², Robert Milla³, and Michael Breadmore¹

¹University of Tasmania, AUSTRALIA, ²Herbert Can Productivity Services Ltd, AUSTRALIA, and ³Burdekin Productivity Services, AUSTRALIA

M218.h FLUORESCENCE REPORTING COUPLED WITH AMPEROMETRIC SENSING USING A NON-POTENTIOSTAT-DRIVEN BIPOLAR ELECTRODE WITH MICROCHIP ELECTROPHORESIS

Indika K. Warnakula¹, Manjula B. Wijesinghe², and Susan M. Lunte¹ University of Kansas, USA and ²University of Peradeniya, SRI LANKA

M219.h INVESTIGATIONS ON RECEPTOR LAYER COMPOSITION, QUALITY OF ELECTROCHEMICAL TRANSDUCERS GOLD SURFACE AND PREPARATION PROCEDURE OF BIOSENSOR DEDICATED TO CHOSEN SARS-COV-2 GENETIC MARKERS DETECTION

Robert Ziółkowski, Jakub Krzemiński, Dominika Baran, Anna Szymczyk, and Elżbieta Malinowska *Warsaw University of Technology, POLAND*

M220.h PROOF OF PRINCIPLE HIGH SURFACE AREA MICROFLUIDIC BIOSENSOR BASED ON INTERLOCKED MICROPILLARS FOR EARLY CANCER DIAGNOSTICS

Gunita Paidere, Edmunds Zutis, Janis Cipa, Roberts Rimsa, Gatis Mozolevskis, and Andris Anspoks University of Latvia, LATVIA

T216.h DEVELOPMENT OF A MICROFLUIDIC AIR-LIQUID INTERFACE BASED VISCOMETER FOR BIOLOGICAL APPLICATIONS

Vinaya Vinaya¹, Ayan Kumar², Stuti Maheshwari³, and Prosenjit Sen¹ Indian Institute of Science, Bangalore, INDIA, ²Indian Institute of Technology, Kharaghpur, INDIA, and ³ Texas A&M University, USA

T217.h FROM DESIGN TO PERFORMANCE: OPTIMIZING THE FABRICATION PROTOCOL AND FINE-TUNING THE PARAMETERS OF SOFT MICROFLUIDIC FORCE SENSORS

Wael Othman^{1,2} and Mohammad A. Qasaimeh^{1,2}

¹ New York University Abu Dhabi, UAE and ²New York University, USA

T218.h LAB-AROUND-FIBER FOR IMMUNOCAPTURE AND OPTICAL DETECTION OF ANTIMICROBIAL RESISTANCE MARKERS

Fatima Flores-Galicia, Marine Poret, Camille Frangville, Alexandre Lerner, Hervé Volland, Guillaume Laffont, and Karla Perez-Toralla Paris-Saclay University, FRANCE

T219.h TEMPERATURE MONITORING BY RELATIVE DIFFERENTIAL METHOD OF MOLECULAR TEMPERATURE PROBES FOR POINT-OF-CARE DIAGNOSTICS

Lauri K. Rannaste^{1,2}, Leena M. Hakalahti¹, and Jussi A. Hiltunen¹

1VTT Technical Research Centre of Finland Ltd, FINLAND and

2University of Oulu, FINLAND

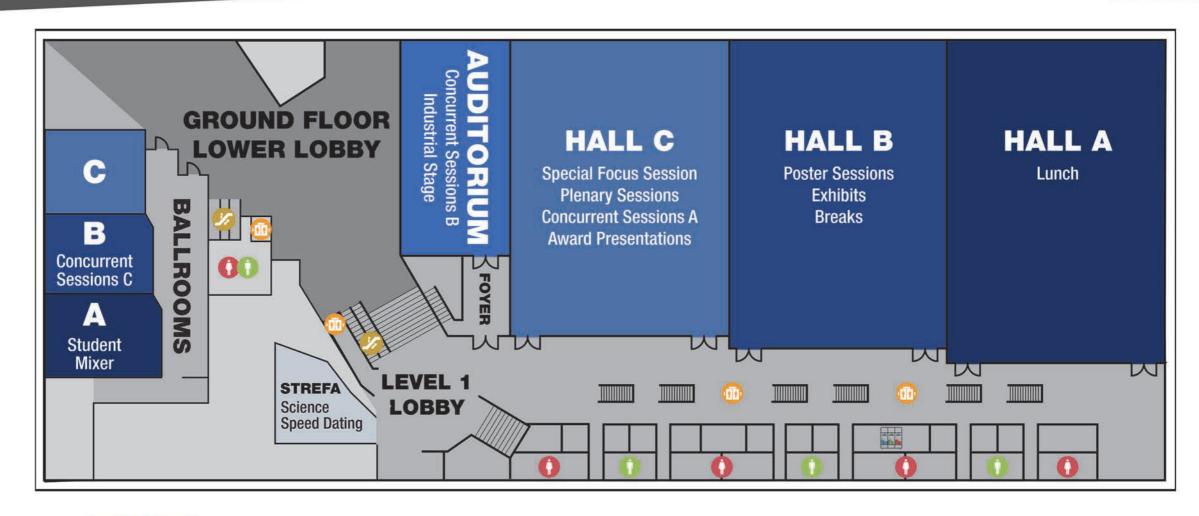
W215.h A MICROFLUIDIC PLATFORM FOR SELECTIVE ON-SITE ELECTROCHEMICAL IDENTIFICATION OF ILLICIT DRUGS

Annemarijn Steijlen, Marc Parrilla, Robin Van Echelpoel, and Karolien De Wael Universiteit Antwerpen, BELGIUM

W216.h ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS) FOR RAPID PATHOGEN DETECTION IN LAB-ON-A-DISC (LOAD) PLATFORM

Eadaoin Carthy^{1,2}, David Boyle^{1,2}, Kellie Adamson^{1,2}, Elaine Spain^{1,2}, and Robert J. Forster^{1,2} ¹Dublin City University, IRELAND and ²National Centre for Sensor Research, IRELAND

W217.h INTEGRATED POINT-OF-CARE MICROFLUIDIC DEVICE FOR MULTIPLEX QUANTITATIVE MONITORING OF VIRAL RESPIRATORY INFECTIONS AND IMMUNE RESPONSES WITH MOLECULARLY IMPRINTED POLYMERS


Roozbeh Siavash Moakhar¹, Carolina del Real Mata¹, Mahsa Jalali¹, Tamer Abdel Fatah¹, Imman Isaac Hosseini¹, Sripadh Guptha Yedire¹, Houda Shafique¹, Sahar Sadat Mahshid², and Sara Mahshid¹ McGill University, CANADA and ²Sunnybrook Health Sciences Centre, CANADA

W218.h NOTEM: THE NEAR-FIELD OPTICAL TRANSMISSION ELECTRON MICROSCOPY FOR AN INNOVATIVE 'IN VIVO' PARALLEL IMAGING ON THE NANOMETRIC SCALE

Krzysztof P. Grzelakowski NOTEM, POLAND

						6	7	1		75
\longrightarrow	MMMM	ENTRANCE				U	1	ENTRANC	EMM	1000 000 1
	-	W190.h T190.h	T160.f M160.f	M131.d W130.d		T099.c ™ M099.c	M070.b W069.b	M040.a W039.a		Poster Info.
M220.h		M191.h M190.h	W160.f W159.f	T131.d T130.d		W099.c W098.c	T070.b T069.b	T040.a T039.a		M001.a T001.a
T219.h		T191.h W189.h W191.h T189.h	M161.f T159.f W161.f M159.f	W131.d M130.d M132.d W129.d		M100.c T098.c T100.c M098.c	W070.b W068.b T068.b	W040.a M039.a W038.a		M002.a
M219.h	60 41	M192.h M189.h	M162.f W158.f	T132.d T129.d	40 21	W100.c W097.c	T071.b M068.b	T041.a T038.a	20 4	T002.a
W218.h T218.h	60 41	T192.h W188.h	T162.f T158.e	W132.d M129.d	40 21	M101.c T097.c	W071.b W067.b	W041.a M038.a	20 1	W002.a
M218.h		W192.h T188.g	W162.f M158.e	M133.d W128.d		T101.c M097.c	M072.b T067.b	M042.a W037.a		M003.a T003.a
W217.h	59 42	M193.h M188.g T193.h W187.g	M163.f W157.e T163.f T157.e	T133.d T128.d W133.d M128.d	39 22	W101.c W096.c M102.c T096.c	T072.b M067.b W072.b W066.b	T042.a T037.a W042.a M037.a	19 2	W003.a
T217.h		W193.h T187.g	W163.f M157.e	M134.d W127.d		T102.c M096.c	M073.b T T066.b	M043.a W036.a	30055	M903.a
M217.h W216.h	58 43	M194.h M187.g	M164.f W156.e	T134.d T127.d	38 23	W102.c W095.c	T073.b W065.b	T043.a T036.a	18 3	T004.a M004.a
T216.h	30 73	T194.h W186.g W194.h T186.g	T164.f T156.e M165.f M156.e	W134.d M127.d W126.d	30 23	M103.c T095.c T103.c M095.c	W073.b T065.b M074.b M065.b	W043.a M036.a W035.a	10 3	W004.a
M216.h	F-7 4.4	M195.h M186.g	T165.f W155.e	T135.e T126.d	07 04	M104.c W094.c	T074.b W064.b	T044.a T035.a	47 4	M005.a
W215.h T215.h	57 44	T195.h W185.g	W165.f T155.e	W135.e M126.d	37 24	W103.c T094.c	W074.b T064.b	W044.a M035.a	17 4	T005.a
M215.h		W195.h T185.g M196.h M185.g	M166.f M155.e T166.f W154.e	M136.e W125.d		M105.c M094.c W105.c W093.c	M075.b M064.b T075.b W063.b	M045.a W034.a T045.a T034.a		W005.a M006.a
W214.h	56 45	T196.h W184.g	W166.f T154.e	W136.e M125.d	36 25	M106.c T093.c	W075.b T063.b	W045.a M034.a	16 5	T006.a
T214.h		W196.h T184.g	M167.f M154.e	M137.e W124.d		T106.c M093.c	M076.b M063.b	M046.a W033.a		W006.a
M214.h W213.h		M197.h M184.g	T167.f W153.e	T137.e T124.d		M107.c W092.c	T076.b W062.b	T046.a T033.a		M007.a T007.a
		T197.h W183.g W197.h T183.g	W167.f T153.e M168.f M153.e	W137.e W123.d M138.e T123.d		T107.c T092.c M108.c M092.c	W076.b T062.b M077.b M062.b	W046.a M033.a M047.a W032.a		W007.a
						1	The second of the second	1		M008.a
										T008.a W008.a
										W000.a
		M198.h 1 M183.g	T168.f W152.e	T138.e M123.d		T108.c W091.c	T077.b W061.b	T047.a T032.a		
-		T198.h W182.g	W168.f T152.e	W138.e W122.d		W108.c T091.c	W077.b T061.b	W047.a M032.a		
T213.h M213.h		W198.h T182.g	M169.f M152.e	M139.e T122.d		M109.c M091.c	M078.b M061.b	M048.a W031.a		M009.a T009.a
W212.h	EE 40	M199.h M182.g T199.h W181.g	T169.f W151.e W169.f T151.e	T139.e M122.d W139.e W121.d	0= 00	T109.c W090.c W109.c T090.c	T078.b W060.b T060.b	T048.a M031.a W048.a W030.a	4= 0	W009.a
T212.h	55 46	W199.h T181.g	M170.f M151.e	M140.e T121.d	35 26	M110.c M090.c	M079.b M060.b	M049.a T030.a	15 6	M010.a
M212.h		M200.h M181.g	T170.f W150.e	T140.e M121.d		T110.c W089.c	T079.b W059.b	T049.a M030.a		T010.a
W211.h T211.h	54 47	T200.h W180.g	W170.f T150.e	W140.e W120.d	34 27	W110.c T089.c	W079.b 1 T059.b	W049.a W029.a	14 7	W010.a M011.a
M211.h	9	W200.h T180.g M201.h M180.g	M171.f M150.e T171.f W149.e	M141.e T120.d T141.e M120.d	النطالك	M111.c M089.c T111.c W088.b	M080.b M059.b T080.b W058.b	M050.a T029.a T050.a M029.a		T011.a
W210.h	52 40	T201.h W179.g	W171.f T149.e	W141.e W119.c	33 28	W111.c T088.b	W080.b T T058.b	W050.a W028.a	13 8	W011.a
T210.h M210.h	53 48	W201.h T179.g	M172.f M149.e	M142.e T119.c	33 20	M112.c M088.b	M081.b M058.b	M051.a T028.a	13 8	M012.a T012.a
W209.h		M202.h M179.g T202.h W178.g	W172.f W148.e M173.f T148.e	T142.e W118.c W142.e T118.c		T112.c W087.b W112.c T087.b	T081.b W057.b W081.b T057.b	T051.a M028.a W051.a T027.a	10 0	W012.a
T209.h	52 49	W202.h T178.g	T173.f M148.e	M143.e M118.c	32 29	M113.c M087.b	M082.b M057.b	M052.b M027.a	12 9	M013.a
M209.h W208.h		M203.h M178.g	W173.f W147.e	T143.e W117.c		T113.c W086.b	T082.b W056.b	T052.b W026.a		T013.a W013.a
T208.h	51 50	T203.h W177.g W203.h T177.g	M174.f T147.e	W143.e T117.c	31 30	W113.c T086.b M114.c M086.b	W082.b T056.b M083.b M056.b	W052.b T026.a M053.b M026.a	11 10	M014.a
M208.h	0.00	M204.h M177.f	W174.f W146.e	T144.e W116.c	01 00	T114.c W085.b	T083.b W055.b	T053.b W025.a	11110	T014.a
W207.h		T204.h W176.f	M175.f T146.e	W144.e T116.c		W114.c T085.b	W083.b T055.b	W053.b T025.a		W014.a
T207.h M207.h		W204.h T176.f	T175.f M146.e	M145.e M116.c		M115.c M085.b T115.c W084.b	M084.b M055.b	M054.b M025.a		M015.a T015.a
W206.h		M205.h M176.f	W175.f W145.e	T145.e W115.c		1113.C W084.B	T084.b W054.b	T054.b W024.a		W015.a
T206.h										M016.a
M206.h W205.h						T024 M024 W023 T023 M023	M022. W021. T021. M021. W020. W020. W019.	M019. W018. T018. M017. T017.		T016.a W016.a
T205.h		Flaamie 's fa B	Description In addition							M017.a
Floorplan is for Poster Presentation locations only and is not to scale.										The same of the same

MEETING SPACE FLOORPLAN

Abstract Submission Deadline 14 MAY 2024

PLENARY SPEAKERS

Altug Hatice

Ulf Landegren

Jennifer Lewis

EPFL, SWITZERLAND Uppsala University, SWEDEN Harvard University, USA

Bin Liu

Dennis Lo

John A. Rogers

National University of Singapore, SINGAPORE Chinese University of Hong Kong, CHINA

Northwestern University, USA

SAVEIDATE

13-17 October **4** 2024

Palais des congrès de Montréal, CANADA

CONFERENCE CHAIRS

David Juncker

McGill University, CANADA

CONFERENCE SPONSOR

CBMS

Chemical and Biological

Aaron Wheeler
University of Toronto, CANADA

www.microtas2024.org

